Successful Elite Sport Policies:
An International Comparison of Elite Sport Policies in 15 Nations (SPLISS 2.0)

Veerle De Bosscher1, Simon Shibli2, Hans Westerbeek3, Maarten van Bottenburg4

1Vrije Universiteit Brussel, Brussels, Belgium
2Sheffield Hallam University, Sheffield, UK
3Victoria University, Melbourne, Australia
4Utrecht University, Utrecht, the Netherlands

Background: The notion of a 'global sporting arms race' (De Bosscher et al., 2008; Green & Oakley, 2001) is based on a growing awareness by nations that sporting success can be produced by investing strategically in elite sport, whereby nations are searching for effective solutions to gain a competitive advantage in elite sport. Consequently, governments increasingly choose to intervene directly in elite sport by providing considerable amounts of public funding, thus leading to the increasing institutionalisation of elite sport systems (e.g., Digel et al., 2006; Houlihan & Green, 2008).

The emerging body of literature on elite sport policy over the past decade (e.g., Andersen & Ronglan, 2012; De Bosscher, et al., 2008; Digel, Burk, & Fahrner, 2006; Green & Houlihan, 2005) has contributed significantly to a better understanding of elite sport development and the factors that contribute to sporting success. What can be concluded from these studies is that broad common categories of elite sport systems exist across multiple countries. These are based on a similar model of elite sports development with only slight variations (e.g. Bergsgard et al., 2007; De Bosscher, et al., 2008; Green & Houlihan, 2005). However, more recent literature also emphasized the diversity of the ways that resources in elite sport policies are combined in different countries (Andersen & Ronglan, 2012; Truyens et al., 2013).

This extended abstract deals with the strategic policy planning process that underpins the development of successful national elite sport development systems. Complementary to existing literature, this research aims to examine the interaction between policy-inputs (financial resources), policy-throughputs (processes) and outputs (results during international competitions, e.g., medals, medal points, number of elite athletes qualifying, etc.) in elite sport more closely. Drawing on a theoretical framework of nine Pillars, it aims to understand which (and how) sport policies lead to international sporting success and to obtain a better insight into the effectiveness and efficiency of elite sport policies of nations at an overall sports level. The presentation is based on the SPLISS (Sports Policy factors Leading to International Sporting Success) 2.0 project, involving 15 distinct nations in collaboration with 58 researchers and 33 policy makers who collected data and on surveys with 3142 elite athletes, 1376 high performance coaches and 243 performance directors.

Methodology: Building on previous research, this study adopts the SPLISS framework (De Bosscher et al., 2006) to collect data on nine Pillars (or policy dimensions) and 96 Critical Success Factors (CSFs) in each nation (Figure 1). This model was tested empirically first in an international comparative pilot study with six nations (Belgium, Italy, the Netherlands, Norway, Canada and United Kingdom) in order to understand how the pillars are activated in different nations and how the different critical success factors can be operationalized in methodological terms (De Bosscher et al., 2008); and
later applied in a comparison with 15 nations (10 European nations (Belgium (FLA + WAL), Denmark, Estonia, Finland, France, The Netherlands, Northern Ireland, Portugal, Spain, Switzerland); 1 nation in Oceania (Australia); 2 in the Americas (Brazil, Canada); and 2 in Asia (Japan & Korea). When SPLISS 2.0 was announced, nations with an interest in the project were invited to participate subject to the condition that they would be able to collect the comprehensive data set and follow the research protocol.

Figure 1: the SPLISS model: Theoretical model of 9 pillars of sports policy factors influencing international success (De Bosscher et al., 2006)

(Reprinted with permission from Taylor & Francis Ltd, http://www.informaworld.com, and slightly adapted from De Bosscher et al., 2006)

Data collection
The Pillars and the 96 CSFs were operationalized through two types of research instruments as a means to collect complementary qualitative and quantitative data: (1) the overall sport policy inventory, with open ended and closed questions on elite sport systems for each of the nine Pillars (212 questions, 184 pages), that are completed by a local researcher in each country and (2) an ‘elite sport climate survey’ completed by 3140 elite athletes, 1376 elite coaches and 241 performance directors. Mixed qualitative and quantitative data were aggregated into a scoring system as a supportive and tangible way of understanding elite sport policies more broadly in relation to sporting success.

Data analysis
As a starting point, qualitative data were analysed inductively and deductively to describe and compare the CSFs in the nine pillars in each nation and to understand the broader context in which elite sport policy operates. In addition, composite indicators (CI) were created, echoing methodologies from economics such as competitiveness and strategic management (Nardo et al., 2008). CIs are synthetic indices of individual indicators and are increasingly being used to rank countries in various performance and policy areas (Freudenberg 2003). They are particularly useful for comparing and objectifying large amounts of international data on elite sport policies in the 15 nations into easily understood formats and for identifying possible success factors in elite sport policies. In this study, a total of 750 sub-factors within the 96 CSFs were allocated a score between 0 and 1. Depending on the source (elite sport climate survey or sport policy inventory) and type of question (open ended, dichotomous or assessment), the
standards for this scale differed. The sub-factor scores were totalled for each CSF and then aggregated into a total percentage score for each Pillar. We refer to De Bosscher et al. (2010; 2015; in Press) for more details about the scoring system methodology.

Results: (reference: De Bosscher et al., 2015) The results showed evidence that 'success is developable', meaning that medals can be influenced by policy impact. Most Pillars correlate positively with success, either in summer or winter sports. As such, better performing countries, also tend to have higher scores on the nine Pillars. This is illustrated in the overall scores overview in appendix 1. Six pillars are significantly related to the success of the sample nations: financial support (Pillar 1), governance, organization and structure (Pillar 2), coaches’ provision and development (Pillar 7), sport science, research and innovation (Pillar 9), training facilities (Pillar 6) (summer sport success only), (inter)national competition (Pillar 8) (summer sport success only). Furthermore, almost all countries do well in athletic career support (Pillar 5). No significant relationship was found with Pillar 3 (sport participation) and Pillar 4 (talent identification and development). These pillars generally show a weak level of development in most nations and scores are higher in smaller nations.

When we delve deeper into the 96 CSFs that are the building blocks of the nine Pillars we find that 22 factors significantly correlate with success either in summer or in winter sports (at the 0.05 level); many of these are characterized by sufficient financial resources and effective structure, governance and coordination. This finding lends further weight to the hypothesis that there may well be a minimum 'entry level' of investment required for a nation of any size to have an effective system, and that money alone does not guarantee success. Meanwhile, each Pillar score is composed of different configurations of CSFs, for example in relation to (de)centralization of talent and facilities and national coordination of local development.

The results also revealed a strong positive relationship between the absolute amount of elite sport funding invested by nations and their success, but some nations use the resources that are invested more efficiently than others. Interestingly, these efficient nations (Australia, Japan, France and the Netherlands for summer sports; Canada, the Netherlands, and Switzerland for winter sports), are also the countries that have the most integrated approach to policy development, with the best scores on Pillar 2: the organization, governance and structure of elite sport.

However, a key finding is that good performing countries show strengths in different sets of Pillars. For example, as can be seen from Figure 2 in a sample of relatively comparative nations (in population size), the strengths of Australia in Pillar 9 and Canada in Pillars 7 (coaches), 8 (inter)national competition) and 9 (research innovation) are almost diametrically opposed to the scores for the Netherlands showing relative strengths in Pillars 2 (organization), 3 (participation), 4 (talent ID and development) and 5 (athletic career support); this shows the importance of the Dutch organizational model that not only enhances sport participation and talent development (mainly in speed skating) but also proves to be effective and efficient in turning this broad base into later elite sporting success with a relatively modest financial investment.

Figure 2: Radar graph of Australia, Canada and the Netherlands compared to the average and maximum scores of 15 nations (De Bosscher et al., 2015)
Discussion: If nations are ranked according to their level of success, the data confirm that good performing nations have a better level of development in the different pillars. Nations aiming to increase short-term success may prefer not to prioritize pillars 3 (participation) and 4 (talent), pillars that delivered the lowest scores. However, it can be argued that investing in these pillars contributes to long-term elite sport development, because of the importance of continuous supply of young talents. It could even be argued that investing in these pillars can deliver to a competitive advantage for smaller nations, where detecting, tracking and developing talent may be easier to manage.

The SPLISS study gives further evidence that there is no 'one size fits all' approach that is applicable to all nations. Despite the search for a common (or similar) path towards elite sport development, “the reality seems to be that there is no generic blueprint - no sets of Pillars, Critical Success Factors or recognised best practices that can be simply lifted from one context and placed in another that will guarantee success. There is broad consensus on the ingredients that go into the elite success recipe but countries combine ingredients in their own unique ways. Accordingly, the key challenges for nations remain to “benchlearn”, instead of benchmark against other competitors; and to seek best broad brush principles of efficient and effective elite sport policies rather than looking for simplistic transfer of so-called best practice” (De Bosscher et al., 2015, p. 361). The challenge remains to find the right blend of system ingredients and processes that will work best for given nations in their own context and culture.

References:

Acknowledgement

SPLISS has largely depended on institutional investments to ensure the national coordination of this large-scale project. The SPLISS consortium partners did not seek any financial contribution from the participating nations as a return for the massive coordinating work. All such costs were met by the Vrije Universiteit Brussels and supported by the consortium members and engaged researchers from the partner countries.

The authors would like to thank the policy institutions that funded the national data collection (see De Bosscher et al. 2015, p24-29 for an overview)

The authors would like to thank the dedicated researchers partners involved in the SPLISS-2.0 study, among others (sorted by country, apart from the authors): Camilla Brockett (Australia, Victoria University) ● Stephanie De Croock and Jasper Truyens (Belgium (Fla), Vrije Universiteit Brussel) Mathieu Winand (Stirling University) and Thierry Zintz (Belgium (Wal), Université catholique de Louvain) ● Maria Tereza Silveira Bohme & team (Brazil, University of São Paulo) ● David Legg & team (Canada, Mount Royal University) ● Henrik Brandt, Rasmus K. Storm, Lau Toft and Nynne Mortensen (Denmark, Danish Institute for Sports Studies & University of Southern Denmark) ● Eerik Hanni (Estonia, National Audit Office of Estonia) ● Patrick Mignon and Emanuel Lelore (France, Institut National du Sport et de l’Éducation Physique-INSEP) ● Jari Lämsä, Jarmo Mäkinen and Mikko Kärmeniemi (Finland, KIHU - Research institute for Olympic Sports) ● Yoshiyuki Mano, Hiroaki Funahashi and team (Japan, Waseda University) ● Bake Dijk (the Netherlands, Utrecht University) ● Paul Donnelly (Sport Northern Ireland, UK) ● Pedro Guedes
De Carvalho and Rui Canelas (Portugal, Beira Interior University) ● Anna Vilanova, Eduard Inglés and team (Spain, National Institute of Physical Education of Catalonia, INEFC) ● Eunha Koh (South-Korea, Korea Institute of Sport Science)● Hippolyt Kempf, Marco Stopper & Andreas, Christophe Weber (Switzerland, Swiss Federal Institute of Sport Magglingen SFISM).