Paced 12 Lead Surface ECG Criteria during Pacemaker Implantation are not Predictive of Right Ventricular Septal Pacing Lead Position Compared to Post Implant Cardiac CT.

Presenter: Dr Gerald Kaye

Peter Moore MBBS FRACP
John Coucher MBBS FRANZCR
Jit Pratap BSc
Paul Gould PhD FRACP

Dr Gerald Kaye MB ChB MD FRCP FRACP FHRS

1. School of Medicine, University of Queensland, Brisbane, Australia
2. Division of Cardiology, Princess Alexandra Hospital, Brisbane, Australia
3. Division of Diagnostic Radiology, Princess Alexandra Hospital, Brisbane, Australia
Presenter Disclosure Information

Gerald Kaye

- Study Chair of Protect-Pace study: sponsored by Medtronic
- Principal Investigator for Respond study: sponsored by Sorin/LivaNova
- Paid lectures Biotronik, Medtronic and Pfizer
- Consultancy agreement: Biotronik

Paul Gould/ John Coucher/Jit Pratap/Peter Moore

- No disclosures
Background

- Experimental and clinical data suggest that chronic right ventricular apical pacing (RVA) may have a deleterious effect on left ventricular function.

- Right ventricular non-apical (RVNA) pacing, particularly septal pacing, has been proposed to prevent left ventricular dysfunction\(^1\).

- Placing a lead at the RV septum involves fluoroscopy in the anteroposterior (AP) and 30\(^0\) left anterior oblique (LAO) position sometimes in combination with a surface ECG\(^2\).

- There is currently no accepted standard methodology for either placing or defining lead position.

Study Aim:

To compare the position of the post-implant pacing lead as determined by high resolution contrast cardiac CT imaging with a paced 12-lead surface ECG

Study approved by hospital Human Research Ethics Committee
Methods

• Entry criteria
 • ventricular pacing lead (single or dual chamber)
 • septal pacing lead placement (RVS) or apical lead position (RVA)

• Lead placement at implant
 • fluoroscopic placement for both positions utilised antero-posterior (AP) and left anterior oblique (LAO) 30° views
 • RVS placement facilitated by use a manually shaped septal stylet
Methods – CT imaging

- Modified Coronary CT angiography imaging protocol
- Intravenous Omnipaque 350 contrast (60ml) (GE Healthcare, Oslo, Norway) was administered at 6ml/s followed immediately by a 70ml 20% contrast/saline bolus at 6ml/s
- Dual source 256 channel Siemens Definition Flash CT scanner (Siemens, Erlangen, Germany)
- True septal lead position was defined if the pacing lead tip pointed towards the left anterior descending artery (LAD)\(^1\) aided by late contrast filling outlining the RV cavity enhancing identification of the interventricular septum

Results ECG – leads designated “septum”

<table>
<thead>
<tr>
<th>AXIS0</th>
<th>V1</th>
<th>V6</th>
<th>LEAD ANGULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>+120</td>
<td>-VE</td>
<td>+VE</td>
<td>SEPTUM</td>
</tr>
<tr>
<td>-30</td>
<td>-VE</td>
<td>-VE</td>
<td>SEPTUM</td>
</tr>
<tr>
<td>+90</td>
<td>-VE</td>
<td>+VE</td>
<td>ANTERIOR</td>
</tr>
<tr>
<td>+90</td>
<td>-VE</td>
<td>+VE</td>
<td>ANTERIOR</td>
</tr>
<tr>
<td>+90</td>
<td>+VE</td>
<td>+VE</td>
<td>ANTERIOR</td>
</tr>
<tr>
<td>-30</td>
<td>-VE</td>
<td>+VE</td>
<td>AS JUNCTION</td>
</tr>
<tr>
<td>+90</td>
<td>-VE</td>
<td>+VE</td>
<td>AS JUNCTION</td>
</tr>
<tr>
<td>+120</td>
<td>-VE</td>
<td>+VE</td>
<td>AS JUNCTION</td>
</tr>
<tr>
<td>+90</td>
<td>-VE</td>
<td>+VE</td>
<td>AS JUNCTION</td>
</tr>
<tr>
<td>+90</td>
<td>-VE</td>
<td>+VE</td>
<td>AS JUNCTION</td>
</tr>
<tr>
<td>+90</td>
<td>-VE</td>
<td>+VE</td>
<td>AS JUNCTION</td>
</tr>
</tbody>
</table>
Results ECG – leads designated “apex”

<table>
<thead>
<tr>
<th>AXIS</th>
<th>V1</th>
<th>V6</th>
<th>LEAD ANGULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-90</td>
<td>-VE</td>
<td>-VE</td>
<td>SEPTAL</td>
</tr>
<tr>
<td>-90</td>
<td>-VE</td>
<td>-VE</td>
<td>SEPTAL</td>
</tr>
<tr>
<td>-90</td>
<td>-VE</td>
<td>-VE</td>
<td>SEPTAL</td>
</tr>
<tr>
<td>-90</td>
<td>-VE</td>
<td>-VE</td>
<td>APICAL</td>
</tr>
<tr>
<td>+90</td>
<td>-VE</td>
<td>-VE</td>
<td>ANTERIOR</td>
</tr>
<tr>
<td>-90</td>
<td>-VE</td>
<td>-VE</td>
<td>ANTERIOR</td>
</tr>
</tbody>
</table>
Conclusion

- CT provides a clear image of the pacing lead tip position
- Rapid image acquisition minimizes movement artifact
- Use of late contrast flush enhances right ventricular septum and provides accurate localization of the lead tip in relation to other cardiac structures
- Is a useful research tool at determining pacing lead position within the heart
- Although the ECG differentiates RVA from RVS lead position it does not allow accurate lead tip position compared to CT