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Abstract 

Voice biometrics for user authentication is a task in which the 

goal is to perform convenient, robust and secure authentication 

of speakers. In this work we investigate the use of state-of-the-

art text-independent and text-dependent speaker verification 

technology for user authentication. We evaluate three different 

authentication conditions: global digit strings, speaker specific 

digit stings and prompted digit strings. Harnessing the 

characteristics of the different types of conditions can provide 

benefits such as authentication transparent to the user 

(convenience), spoofing robustness (security) and improved 

accuracy (reliability). The systems were evaluated on a corpus 

collected by Wells Fargo Bank which consists of 750 

speakers. We show how to adapt techniques such as joint 

factor analysis (JFA), i-vectors, Gaussian mixture models with 

nuisance attribute projection (GMM-NAP) and hidden 

Markov models with NAP (HMM-NAP) to obtain improved 

results for new authentication scenarios and environments. 

Overall, EERs significantly lower than 1% have been 

obtained for the matched channel condition, while the error 

almost triples for the mismatched channel condition.  

In order to be able to use advanced techniques such as JFA 

and i-vectors in a realistic low-latency system we have 

developed the JFAlight method and the efficient i-vector 

extraction method for efficient approximated JFA and i-vector 

scoring. Using these algorithms we managed to speed up the 

JFA and i-vector methods to be comparable to the widely used 

NAP method.  

1. Introduction 

With the rapid growth of mobile internet and smart phones, 

security shortcomings of mobile software and mobile data 

communication have shifted the focus to strong authentication. 

The existing user-id/password methodology, while tolerable 

for desktops and laptops, is inadequate for mobile use due to 

the difficulty of data entry on a small form factor device and a 

higher risk of the device getting in the hands of unauthorized 

users. Recent advances in voice biometrics offer great 

potential for strong authentication in mobile environments 

using voice. This is of particular interest in the financial and 

banking industry, where financial institutes are looking for 

ways to offer mobile customers flexible and easy 

authentication while maintaining security and significantly 

reducing fraudulent usage. 

This paper describes the work done at IBM within the 

framework of a proof of technology (POT) which was 

performed on data collected by Wells Fargo. Although most of 

the evaluated authentication scenarios are text-dependent we 

mostly used text-independent speaker verification technology 

(namely JFA [1], i-vectors [2] and GMM-NAP [3]) for the 

POT. The only exception made was in the case of user 

authentication using a fixed common digit-string where we 

used text-dependent speaker verification technology (namely 

HMM-NAP [4]) in conjunction with the text-independent 

technology. However, in order to benefit from the particular 

characteristics of the data we adapted the GMM-NAP-based 

system and to a lesser extent also the JFA-based and i-vector 

systems to the development data we were provided within the 

POT framework. 

The remainder of this paper is organized as follows: 

Section 2 describes the datasets. Section 3 describes our JFA, 

i-vector and  GMM-NAP-based text-independent systems and 

our HMM supervector-based text-dependent system. Section 4 

presents the results for our individual and fused systems. 

Section 5 reports accuracy and speed measurements using 

approximated JFA and approximated i-vector extraction. 

Finally, Section 6 concludes. 

2. Datasets 

2.1. Authentication conditions 

In the context of text dependent user authentication we defined 

three different authentication conditions. In the first 

authentication condition named global, a common text is used 

for both enrollment and verification. In the second condition 

named speaker a user (speaker) dependent password is used 

for both enrollment and verification. The third condition 

named prompted is a condition in which during the 

verification stage the user is instructed to speak a prompted 

text. Enrollment for the prompted condition uses speech 

corresponding to text different than the prompted verification 

text.  

The global condition has the advantage of potentially 

having development data with the same common text. The 

speaker condition has the advantage of high rejection rates for 

imposters who do not know the password. However, in our 

experiments we assume that the imposters do know the 

passwords. The prompted condition has the advantage of 

robustness to recorded speech attacks compared to the global 

and speaker conditions.  

For a proof of technology the WF bank collected data from 

750 of its employees. For the global condition the WF dataset 

consists of several common texts. In this work we report 

results on a single common 10 digit string. For the speaker 

condition, the dataset consists of four speaker dependent 

passwords, each one used by a quarter of the speakers. 

However, in order to focus on the scenario of a knowledgeable 

impostor, we report results for four globally spoken texts 

which are 10 digit strings. The difference between our global 

condition experiments and our speaker condition experiments 

(besides the different choice of digit strings) is that for the 

speaker condition we assume that development data which 

contains the chosen digit strings is unavailable. For the 

prompted condition the WF dataset contains an 8-digit string 

for verification. 



2.2. The WF corpus 

The WF corpus consists of 750 speakers which are then 

partitioned into a development dataset (200 speakers) and an 

evaluation dataset (550 speakers). Each speaker has 2 sessions 

using a landline phone and 2 sessions using a cellular phone. 

The data collection was accomplished over a period of 4 

weeks. Table 1 describes the datasets used for the different 

conditions. Each session consists of 3 repetitions for each 

global password and 3 repetitions for each speaker password. 

We use all 3 repetitions for global and speaker enrollment, 

and only a single repetition for verification for all 

authentication scenarios. In all of our experiments we use only 

same gender trials though the identity of the gender is not 

assumed to be known by the system. 

Table 1. Lists of the spoken items used for 

development, enrollment and verification by the 

different authentication conditions in the WF 

evaluation. n1-n9 denote 9 distinct 10-digit phone 

numbers. 

Condition Development  

  spoken 

items 

Enroll 

spoken 

items 

Eval  

 spoken 

items 

Global 0123456789 

Speaker 

1st subset 
n6 

Speaker 

2nd subset 
n7 

Speaker 

3rd subset 
n8 

Speaker 

4th subset 

0123456789 

n1-n5 

n9 

Prompted n1-n6 
0123456789 

n1, n4 
25703580 

 

2.3. Standard telephony development set 

We use the 12,711 sessions from the following datasets: 

Switchboard-II, NIST 2004, 2005 and 2006 speaker 

recognition evaluations (SREs).  

 

3. Speaker verification systems 

In this section we describe the four speaker verification 

systems we use in conjunction, and our fused system. 

3.1. JFA-based system 

Our Joint Factor Analysis (JFA)-based system is inspired by 

the theory described thoroughly in [1]. A detailed description 

of our implementation can be found in [5]. Differently from 

the standard implementation, we use the following two 

variants to better cope with short and asymmetric sessions 

(enrollment longer than test).  

First we use a robust scoring function (Equation 1) which 

gives an average relative error reduction of 8% for our text 

dependent scenarios. 
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In Equation 1 sE denotes the centered and compensated 

supervector for the enrollment session 

 

EEE DzVys +=  and 

sT denotes the centered compensated supervector for the test 

session mUxFNs TTTT −−−−−−−−====
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. V, D and U stand for the 

speaker, common and channel JFA hyper-parametric matrices, 

yE and zE are point estimates for the speaker and common 

factors for the enrollment session, xT is a point estimate for the 

channel factors for the test session, FT is a vector consisting of 

the first order statistics for the test session, and NE and NT are 

the zero order statistics for the enrollment and test sessions 

correspondingly, arranged in matrices as explained in [5]. 

Finally, m stands for the UBM (Universal Background Model) 

supervector, and ∑ is a block matrix with covariance matrices 

from the UBM on the diagonal. 

Our second deviation from standard JFA is the use of an 

asymmetric combination of forward and reverse scores using a 

simple weighting scheme. The weighed fusion method enables 

us to gain from reverse scoring even when test sessions are 

shorter than the enrollment session (the WF POT typical 

scenario). 

Our JFA-based system was built using the telephony 

development set described in subsection 2.3. The reason we 

did not use the WF POT development data is that when doing 

that, we observed only a small improvement compared to 

using the standard conversational telephony data. The only use 

we made of the WF POT development data is for ZT-score 

normalization. 

3.2. I-vector-based system 

Our i-vector-based system [6] is inspired by the work 

described in [2]. We use standard i-vector extraction with 

length normalization followed by LDA (Linear Discriminant 

Analysis) and WCCN (Within Class Covariance 

Normalization). We use cosine-based similarity scoring and 

normalize using ZT-norm which we found to be slightly 

superior to s-norm in our setup. The development data used 

for system building is identical to the data we use for JFA 

building. 

3.3. GMM-NAP-based system 

Our GMM-NAP system inspired by [3] is described in detail 

in [4]. Our GMM-NAP system deviates from the standard by 

the following modifications.  

3.3.1. Two-wire NAP 

In [7, 8] we discovered that removing dominant components 

of the inter-speaker variability subspace in addition to 

removing the intra-speaker inter-session variability subspace 

improves speaker recognition accuracy not only for 2-wire 

data (for which this method was originally designed) but also 

for regular 4-wire data. This variant named 2-wire-NAP is 

therefore part of our baseline GMM-NAP system and led to a 

relative reduction of 6% in EER on the WF POT. 

3.3.2. Text dependent UBM & NAP projection 

Contrary to the JFA and i-vector frameworks, NAP requires 

smaller quantities of development data to properly estimate the 

hyper-parameters (UBM and NAP projection). As we reported 

in [4], estimating text-dependent UBM and NAP from the 

WF-POT development set led to a dramatic reduction in EER. 



3.3.3. Geometric mean comparison kernel  

Contrary to [4], we now use the kernel introduced in [9] for 

scoring a pair of sessions: 
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where E and T stand for the enrollment and test sessions,  mE 

and mT are the corresponding concatenated GMM means, λE 

and λT are the corresponding concatenated GMM weights, ∑ is 

a block matrix with covariance matrices from the UBM on the 

diagonal, n is the feature vector dimension, and ⊗⊗⊗⊗  is the 

Kronecker  product. 

3.4. HMM-NAP-based system  

The HMM-NAP-based system is an extension of the GMM-

NAP system in the sense that instead of using a UBM to 

parameterize audio sessions into GMM-supervectors, a 

speaker-independent (SI) Hidden Markov Model (HMM) is 

used to parameterize audio sessions into HMM-supervectors. 

The other components of the GMM-NAP system (feature 

extraction, 2-wire-NAP estimation and compensation, dot-

product scoring and ZT-normalization) are used identically in 

the HMM-NAP framework. 

We use our HMM-NAP system for the global 

authentication condition (shared password) only.  For a given 

shared password a SI-HMM is trained using all repetitions of 

the shared password in the development data. The SI-HMM is 

then used to parameterize all the repetitions of the shared 

password in the development, train and test datasets. We use 

only the Gaussian means of the different HMM states (with a 

similar normalization as done for the GMM-NAP system) for 

supervector creation. 

3.5. Fused system  

We combine the scores of the JFA, i-vector, GMM-NAP and 

HMM-NAP (for the global condition) into a single fused 

system. The scores are combined using a weighted average 

which assigns a double weight for systems which are 

significantly more accurate. 

4. Results 

In this section we report the results for the three authentication 

conditions using JFA, i-vector, GMM-NAP, HMM-NAP (for 

global only) and the fused system which is obtained by taking 

an average of the JFA, i-vector and GMM-NAP scores (for the 

global condition, the fused JFA, i-vector and GMM-NAP 

score is further averaged with the HMM-NAP score). 

Tables 2 and 3 present results for the channel matched and 

channel mismatched conditions respectively. For all 

conditions the NAP-based systems outperform both the JFA 

and the i-vector systems due to the fact that the GMM-NAP 

was built on the WF-POT development dataset and the JFA 

and i-vector systems were mostly built on conversational 

telephony. 

Table 2. EER (in %) for the three authentication 

conditions. Target trials are channel matched. 

Condition JFA 

 

i-

vector 

GMM 

NAP 

HMM 

NAP 

Fused 

 

Global  1.25 1.69 0.83 0.84 0.56 

Speaker  1.76 2.19 1.54 - 0.85 

Prompted  5.13 5.44 4.39 - 2.48 

 

Table 3. EER (in %) for the three authentication 

conditions. Target trials are channel mismatched  

Condition JFA 

 

i-

vector 

GMM 

NAP 

HMM 

NAP 

Fused 

 

Global  3.57 4.71 2.33 1.98 1.56 

Speaker  4.48 5.78 4.15 - 2.87 

Prompted  10.99 11.06 9.22 - 6.41 

 

 

5. Approximated JFA and i-vector 

extraction 

In [5] we introdued the JFAlight method which manages to 

speed up LLR calculation under the JFA framework 

(excluding sufficient statistics calculation which is relatively 

fast) by a factor of 100 with no statistically significant 

degradation in accuracy for the WF evaluation. 

In [6] we introduced an efficient method for approximated 

i-vector extraction. The method manages to speed up i-vector 

extraction (excluding sufficient statistics calculation which is 

relatively fast) by a factor of 25 with no statistically significant 

degradation in accuracy for the WF evaluation.  

6. Conclusions 

In this work we explored three different user authentication 

conditions namely global, speaker and prompted. We 

evaluated four speaker recognition frameworks (JFA, i-vector, 

GMM-NAP and HMM-NAP) and a fusion of the four. The 

HMM-NAP algorithm was found to be the best single system 

for the global condition. Our GMM-NAP system which is 

inferior to our JFA system on a standard NIST SRE 

(EER=3.6% compared to EER=1.4% on NIST-2008 data) was 

superior on the WF POT evaluation due to its full usage of the 

WF POT development data. We managed to improve our 

baseline GMM-NAP system significantly mostly by using the 

most appropriate data for UBM and NAP-projection 

estimation.  

Overall, EERs lower than 1% have been obtained for the 

matched channel condition (for global and speaker), while the 

error triples for the mismatched channel condition. 

Furthermore, fast JFA scoring [5] and fast i-vector 

extraction [6] has reduced the time complexity of these scoring 

systems to be comparable to the time complexity of 

GMM/HMM-NAP scoring with an insignificant degradation 

in accuracy compared to the original techniques. 
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