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Abstract
In this work we examine the interest of both LDA and PCA ap-
plied on the mel-cepstrum coefficients for speaker diarization.
PCA is applied before the diarization process when LDA is used
after an initial diarization step. We show that PCA allows a re-
duction in diarization time but do not offer a diarization error
reduction contrarily to LDA which allows a performance im-
provement of about 14.8% (relative).

1. Introduction
Speaker diarization is a process of segmenting a speech record
into homogeneous segments, such that each segment will con-
tain one speaker only. Additional type of segments, e.g., non-
speech and overlap speech, should also be segmented. All seg-
ments from the same speaker have to be clustered together.
Usually the number of speakers are unknown, however, in sev-
eral application, like telephone conversations, this information
is available [1]. In this work the diarization is performed on two
speaker telephone conversations assuming that two speakers are
present in the recordings.

This work aims to evaluate the potentiality of principal-
component-analysis (PCA) and linear-discrimination-analysis
(LDA), applied on the mel-frequency cepstrum coefficients
(MFCC) for speaker diarization. Both PCA and LDA allow a
data dimensionality reduction and a better conditioning of the
data space, when LDA adds discriminant aspects to this data
space. Thanks to these techniques, we hope to improve the
speaker diarization performance, both in terms of error rates
and in terms of computing resources.

We are using a speaker diarization baseline system based
on an iterative approach. When iterative approach is applied,
change detection and clustering are performed at once, and the
process iterate until convergence. Our baseline system is an
HMM-based system with fix duration constraint and with self-
organizing-map (SOM) as emission probability estimator [2].

The PCA is applied on the MFCC as a data pre-processing
step when LDA is applied after a preliminary diarization pro-
cess. It is due to the discriminant nature of LDA, which needs to
label the data for the training phases. We hope that after the pre-
liminary diarization step, the speakers are sufficiently well sep-
arated to produce, thanks to LDA, a discriminative sub-space
useful for additional speaker diarization iterations. PCA and
LDA are also evaluated jointly.

The experimental part of this work is done on LDC America
CallHome database [3] and uses NIST performance measure
[4].

2. Fix duration diarization system
Our diarization system corresponds to the baseline system in
[2]. Its block diagram is given in figure 1. At first 12 MFCC

features from 20ms windows are extracted each 10ms. A sim-
ple energy-based voice activity detection (VAD) is applied in
order to obtain an initial speech/non-speech segmentation. In
parallel, an overlap speech detection is performed. This process
is based on maximum a-posteriori estimator of the wave form
entropy, which is estimated each 100ms. The overlap speech is
pruned out of the conversation. The speaker models are initial-
ized using weighted-segmental K-means (WSKM). The diariza-
tion is performed by 3-hyper-states HMM, corresponding to the
two speakers and the non-speech. Each hyper-state model has
20 tied states (200ms) with transition probability 1 for the first
5 iterations of the diarization system and only 10 tied states
(100ms) for the last iteration. In the rest of the paper, such
training will be denoted as L + 1 iterations, when L indicates
the number of iterations with 20 tied states. The state models
are SOM of size 6× 10 used as log-likelihood estimators. Each
code-word is assumed to be a mean of a Gaussian with iden-
tity covariance matrix. The transition matrix is initially trained
using the initial segmentation received from the VAD and the
WSKM. Following the training step, a Viterbi decoding is ap-
plied and gives a new segmentation and clustering.

Figure 1: Baseline diarization system.

2.1. Overlap speech detection

The overlapping speech detector is described in [5]. The de-
tection is performed in time domain. As the conversation is
sampled with 16bits, we calculate the probability of each quan-
tization level. Be x ∈ X the quantization level random vari-
able, and probability mass function (pmf ) is p(qi) = Pr{x =

qi} = #{xn:xn=qi}
N

, when qi is the quantization level; # is
the number of samples of this level in the conversation; and N
is the total number of samples in the conversation. After esti-
mating pmf, the entropy of each segment, 100ms in length, is
estimated given p(qi). For each segment {si}Si=1, the empirical
entropy {Ei}Si=1 is given by Ei = 1

Ni

∑
xj∈si log{xj}, when

Ni is the number of samples in each segment (in our case it is
always Ni = 800, 100ms with 8kHz sampling rate).



After the computation of all the entropies, a one dimen-
sional GMM with 4 mixture components is estimated over
{Ei}Si=1. The Gaussian component with the smallest mean
is referred to non-speech model when the component with the
largest mean indicates overlapping speech and the other two, the
two speakers. A MAP estimator is applied between the over-
lapping speech Gaussian component and the component of the
speaker with the higher mean to find the minimum classifica-
tion error threshold. However, it is not the best threshold to
minimize the diarization error. This threshold was found to be
relative to the MAP estimator threshold and the highest mean,
as described in [5]. All the segments which are labeled as over-
lapping speech are discard from the diarization process.

2.2. Initialization using weighted segmental K-means

The WSKM algorithm was first presented at [6], and it is based
on a variant of a standard K-means, the weighted K-means
(WKM) algorithm. After the speech/non-speech separation, the
mean of each speech segment, {Si}Mi=1, is calculated, {µi}Mi=1,
when M is the number of speech segments at the output of the
VAD. The weights associated of each segment are the length
of the segment {wi = Ni}Mi=1. The WKM is applied on the
{(µi, wi)}Mi=1. The WSKM has the following algorithm:

1. Initiate the codebook with random selection of K vec-
tors, out of {µi}Mi=1 (in our case K = 2), and the code-
words are {Wk}Kk=1.

2. For each code-word, find the segment means such that
the cluster Ck = {µi : ∀l 6= k • d(µi,Wk) ≤
d(µi,Wl)}, when d(x, y) is an Euclidean distance.

3. Update the codewords as follows: Wnew
k =∑

µi∈Ck
wiµi∑

µi∈Ck
wi

and assign {Wnew
k }Kk=1 → {Wk}Kk=1.

4. If termination conditions met, exit; otherwise, return to
step 2.

2.3. Emission likelihood estimation

For the state emission likelihoods, we use self organizing maps
(SOM) [7]. Self-organizing map is a neural network that pro-
duces a stochastic vector quantization (VQ) which minimizes
the mean squared error.We apply here the two phases training
algorithm described in [1], [8]. The trained SOM neurons are
the codewords of the codebook, {wcl}Ll=1. The assumption
we made for the state emission log-likelihood estimation is that
each code-word is the mean of a Gaussian with identity covari-
ance matrix [9]. For each feature vector the state emission log-
likelihood is the maximum of the log-likelihoods of one feature
vector, xn:

L(xn|cwl
∗
) = − d

2
log(2π)− 1

2
(xn − cwl

∗
)t(xn − cwl

∗
)

cwl
∗
= min
l=1,...,L

{(xn − cwl)t(xn − cwl)}
(1)

when t is the transpose operator.

2.4. Fix-duration HMM

An example of a 2-sates fix-duration HMM is shown in figure 2.
Each time the system enters one hyper-state, it will stay at this
state for a predefined number of frames, τ . When the system
is in the last state (of an hyper-state) it will transit to the first
state of any hyper-state (including returning to the first state of
the current hyper-state). Inside the hyper-state, all the states are
tied with the same emission probability model (same SOM) and

with probability one to move to the next state. At each iteration,
the best path is found using Viterbi search. A given hyper-state
corresponds to one of the two speakers or to non-speech clus-
ter. If it is not the final iteration, the models are retrained using
standard SOM training algorithm, when the initial SOM for the
retraining is the current SOM. The hyper-states transition ma-
trix is also retrained, based on the Viterbi statistics.

Figure 2: 2 States fix duration HMM.

The transition matrix is composed of K ×K blocks:

A =


A11 A12 · · · A1K

A21 A22 · · · A2K

...
...

. . .
...

AK1 AK2 · · · AKK

 (2)

Each block Aqk is a τ × τ matrix. (τ is the number of states
in each hyper-state). Each matrix on the main diagonal is the
transition matrix of moving inside hyper-state, and it contains
only zeros and ones below the main diagonal, except the last
element at the first raw which gives the probability of returning
to the first state of the hyper-state (self-loop at the hyper-state
level) eq. 3. The blocks out of the main diagonal contain only
zeros except the last element at the first raw, which is the transi-
tion probability to move to hyper-state q from hyper-state k, eq.
4.

Akk =


0 · · · 0 p (k|k)
1 0 · · · 0
...

...
. . .

...
0 · · · 1 0

 ∈ Rτ×τ (3)

Aqk =


0 · · · 0 p (q|k)
0 0 · · · 0
...

...
. . .

...
0 · · · 0 0

 ∈ Rτ×τ (4)

The probabilities at the place (1, τ) are trained by the Viterbi
statistics.

3. PCA and LDA encapsulation
In this work we evaluate the influence of the PCA applied be-
fore the diarization and the influence of LDA applied after sev-
eral diarization system iterations. Figure 3 presents the block
diagrams of the two processes.

As we said before, labeled data is required for LDA. So, we
apply 5 iterations of the diarization system, as we observed that
the diarization system usually converges to a local maximum
after 5 iterations of the algorithm. Then, we apply LDA using
the obtained labels, which correspond to non-speech, speaker 1
and speaker 2. Finally, five more iterations of Viterbi clustering
and system retraining are performed using the projected data



Figure 3: PCA-LDA-based diarization system.

with minimum duration of 200ms, followed by a final iteration
with minimum duration of 100ms.

The LDA-based diarization could be applied on the MFCC
features but also on MFCC features following by PCA. It gives
a total of three variants to compare verse the baseline system:

1. PCA: 5 + 1 iterations of the diarization system, applied
on MFCC features preprocessed by PCA

2. LDA: 5 iterations of the diarization system, followed
by LDA, and additional 5 + 1 iterations on the LDA-
tranformed features.

3. PCALDA: 5 iterations of the diarization system, applied
on MFCC features preprocessed by PCA. The LDA is
performed and the system is launched for 5+1 additional
iterations using the resulting features (where PCA and
LDA were sequentially applied).

The experiment results obtained by these systems are presented
in the following section.

4. Experiments and results
This section describes the database used for the experiments;
the performance measure; the diarization error rate (DER) and
the experiments which are conducted.

4.1. Database

For evaluation purposes, 108 conversations extracted from LDC
America CallHome English language corpus were used [3]. It
corresponds to all the conversations with an associated tran-
scription. In most of the conversations, about 10 minutes are
transcribed and were used. The data was sampled at 8kHz in
a 2 channel µ-law format. The two channels were summed to
generate a two speaker conversation.

4.2. Diarization error rate (DER)

Diarization Error Rate was defined by NIST in order to evaluate
the speaker diarization task [4]. The DER is defined by:

DER =

100 ·

S∑
s=1

{dur(s)(max(NRef (s), NSys(s))−NCorrect)}

S∑
s=1

{dur(s) ·NRef (s)}

(5)

where dur(s),NRef (s),NSys(s) andNCorrect(s) correspond
to the duration of the segment s; the number of speakers as-
signed to segment s; the number of speakers assigned by the

system to segment s; and the number of speakers assigned by
the system to segment s which actually takes part in s, respec-
tively.

In the DER computation, 0.5sec of speech around the
changing points is excluded to the scoring applied, i.e., 0.25sec
of speech on each side of each changing point is not used for
the scoring.

4.3. PCA-based experiment

Figure 4 shows the results of the PCA experiment. As we used
12 MFCC features, we can project the data between 1 to 12
projection directions; the last case corresponds to a rotation of
the features in the 12 dimensional space. We can see that there
is no improvement in terms of DER but the results are quite
similar for 9 PCs and more, compared to the baseline.

Figure 4: DER as a function of the number of PCs.

Figure 5 shows the runtime of the diarization system as a
number of selected principal components (PCs). It can be seen
that the time changes almost linearly with the number of PCs.
This result was expected as the most time consuming part of our
system is the SOMs’ training phase, and it has a linear depen-
dence on the feature vector dimension. The overhead for PCA
calculation in negligible. The overall runtime time of the di-
arization system for 108 conversations with a PCA order of 12
(rotation only) is about 2Sec longer compared to the baseline
system time (about 1739Sec).

Figure 5: Diarization time as a number of PCs.

4.4. LDA-based experiment

Figure 6 (black line) shows the results of the LDA experiment,
where the LDA is applied alone. As in the first experiment, the



MFCC features are of dimension 12, so we could use between
1 to 12 projection axes; again, the last case is just rotation of
the features in the 12 dimensional space. Of course, the run-
time needed by this system is higher than the baseline’s one, as
additional 5 iterations are required. To assess the performance
of our LDA system, we are using here a 10 + 1 version of the
baseline system. This version obtains a DER of 16.72%, to be
compared with 14.25% for our best LDA system (using pro-
jection on 5 linear discriminant vectors). It corresponds to a
relative improvement of about 14.77% of the DER.

4.5. PCA-LDA-based experiments

For the third experiment, we combine PCA and LDA. For the
PCA, we select between 9 and 11 PCs (these dimensions corre-
spond to the ones which obtained similar DER compared to the
baseline system). Figure 6 shows the results of this experiment.
It presents the obtained DER depending on the number of se-
lected PCs and the number of LDA dimensions. For all PCA
setups, the best number of LDA components is 4 or 5, which is
consistent with the second experiment. The obtained DER are
always better than the baseline 10 + 1 system DER but remain
slightly worse than the performance obtained by the LDA taken
alone. However, a small reduction of runtime can be achieved
in the first stage as it is shown in figure 5.

Figure 6: DER as a function of the number of PCs and LD
vectors. The black line is corresponds to the LDA only system.

5. Conclusions
In this work we explored the potential of PCA and LDA within
the framework of 2-speaker telephone conversations speaker
diarization, using an iterative diarization system. The LDA
approach allows a relative DER reduction of about 15%. It
demonstrates the interest of this discriminant feature transfor-
mation for speaker diarization, knowing that the needed infor-
mation about the classes to discriminate is obtained fully au-
tomatically by running the diarization system itself before to
apply the LDA. By comparison, the PCA seems not able to im-
prove the discriminant power of the feature space as no DER
improvment was observed using PCA, versus the baseline sys-
tem. Nethertheless, PCA allows a (relatively small) reduction of
diarization runtime ( 6.3% for 9 PCs) without any loss in terms
of DER, still compared to the baseline system. Combining both
PCA and LDA also allows better performance compared to the
baseline system but do not improve the results of the LDA taken
alone (except a small reduction of the system runtime).

If the interest of a discriminant transformation of the feature
for speaker diarization was demonstrated in this paper, several

questions remain open. First, the LDA relies on the quality of
the labeling used to train it. This quality depends both on the
speech recording itself and on method used to obtain the first
labeling.

Concerning the speech recordings, we applied our LDA ap-
proach on NIST SRE-05 [10] and we were unable to observe
a performance improvement using LDA. The average segment
length of LDC America CallHome database is about 2.07sec
when it is less than 1 one second for NIST SRE-05. For LDC
America CallHome database, the initial diarization process pro-
duces good enough results to estimate the LDA discriminant
transformation and, finally, good performance is obtained using
LDA. For NIST it is not the case, due according to us to the
average segment duration, and LDA was not able to produce a
good discriminant space. This remark shows the dependency
between the intrinsic difficulty of the speech recordings and
the usefulness of our LDA approach. Nevertheless, we used
our baseline diarization system optimized in terms of diariza-
tion performance in order to obtain the initial labeling used to
train the LDA parameters. It seems interesting to us to optimize
this step specifically for our objective: produce robust class in-
formations in order to train LDA parameters. Our hypothesis
is that a task oriented process will allow to both improve the
LDA performance improvement and the LDA robustness de-
pending on the speech recordings. Finally, other discriminant
approaches could also be investigated.
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