An Efficient Algorithm for the Transcription of Spontaneous Speech

Ami Moyal
ACLP – Afeka Center for Language Processing
Afeka Academic College of Engineering

SpeechTEK Europe
May 27, 2010
A research and instruction laboratory for spoken and written language processing
- Research activities in speech and text processing
- Joint R&D projects with industry
- Consulting services to the industry
- Specialized courses for industry professionals
- Project opportunities for final year students

Goal: To become a source of knowledge in the fields of spoken and written language processing and related applications.
Agenda

- Project Description
- LVCSR Systems
- Project Main Activities
- Voicemail Content
- Lexicon Construction
- Efficient Implementation
- Preliminary Results
- Summary and Next Steps
Project Description

- Research project funded by the Chief Scientist of the Israeli Ministry of Industry and Commerce
- Encourages the delivery of technology from academic institutes to the industry
- Joint research between Afeka (academic institute) and SpeechModules LTD (industry company)
- 11 researchers
- Two Years
Project Focus

- Spontaneous speech transcription
- Focus on messaging transcription
- Requirement for various applications:
 - VM to SMS
 - SMS speech input
 - IM speech input
- Testing on real VM database
- Very Large Vocabulary – 250K words
- Computational complexity vs. recognition performance in various LVCSR structures
- Use results in mass market messaging transcription application
LVCSR System Overview

Training Speech Data → Training → Acoustic Models (AM)

Speech Input → Decoding → Textual Output

Main Challenges

- Performance with very large vocabularies
- Spontaneous speech
- Computational complexity
- RT operation in large scale deployments
Multi-Stage LVCSR

Speech Input

Lexicon

Vocabulary Reduction

Reduced Voc.

Phoneme Decoder

DH A I A B N M T P

AM

LM

Built Grid

Textual Search

Search Grid (Decoding)

TEXTUAL OUTPUT
Multi-Stage LVCSR

Potential Advantages

- Better performance – reduced vocabulary at final recognition stage
- Less sensitivity to vocabulary size
- Reduced computational complexity
 - Efficient Additional stages vs. smaller search space
- One engine using a huge lexicon for various domains
Project Main Activities

- Lexicon design and construction
- Word hypothesis creation
- Efficient phoneme sequence distance measure
- Testing on real VM DB
Voicemail Content

- Spontaneous speech
- Very large vocabulary
- Hesitations and other disfluencies
- Unstructured speech
- Large number of names
Names in VM DB

38% of the lexicon covers only 5% of the total corpus

- 18,100 Names (5%)
- 3770 Names (38%)
- 311,250 Common Words (95%)
- 6138 Common Words (62%)
Names in Voice Messages

Peak at 2-3 names per voice message

![Graph showing the number of names per voice message for VM1 and VM2. The graph peaks at 2-3 names per message.]
Voicemail Lexicon Design

For 90% per domain coverage – 250K

- **Content words (50K)**
- **Names (200K)**
 - 150K people
 - 50K places, organizations
Lexicon Status

- A word list for a lexicon of 250K was compiled
- An initial version of a 100K Lexicon was completed
- The 100K-word lexicon is currently being used for testing
Only anchor-based hypotheses will be evaluated.

<table>
<thead>
<tr>
<th>Recognized Phoneme Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH</td>
</tr>
<tr>
<td>Hyp 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lexicon</th>
<th>about AH B AW T</th>
<th>keep K IY P</th>
<th>show SH OW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0</td>
<td>0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>
Word Hypothesis Creation
Current Status

- Various anchor types and methods have been tested
- Currently per word hypothesis the best anchor is chosen
- 50% decrease in time, loss of 0.5% in word coverage
Phoneme Distance Measure

Full Search Grid

Word Hypotheses from Sequence

Number of $D(W_i, \text{Hyp}_j)$:

$$\text{Grid Size} \times O(n^2)$$
Various Methods have been tested

Diagonal distance measure - 90% decrease in time, loss of 2% in coverage

Adding weighted measure based on phoneme recognition performance – increase in original coverage by 5%
Experimental Environment

Macrophone Database

- Language - American English
- Channel - Telephone
- Number of Speakers – 4505
 - ~4000 – training, ~500 - testing
- Above 1 million words
- ~12K unique words
- Read speech
Experimental Environment

Voicemail Database

- Language - American English
- Channel – Telephone
- Typical message:
 - 21 seconds
 - 75 words
 - 250 phonemes
- Above 300K words
- ~10K unique words
- Spontaneous speech – Authentic messages
Acoustic Model Training

- Train DB - Macrophone Training (4005 speakers)
- Phoneme set - 39
- Features - MFCC 13 + Δ + ΔΔ
- Acoustic Model Topology:
 - HMM 3 state left to right
 - Tied state triphones
- 16 Mix
Preliminary Results

- Telephony
- Read Speech
- Correct Character Recognition – 85%
- CER – Character Error Rate – 20%
 - Substitution - 8.1%
 - Deletion - 6.88%
 - Insertion - 5.02%
Summary and Next Steps

- Completed in the initial 8 months of the 24 month project:
 - Infrastructure established
 - Initial versions for all three activity tracks
 - Preliminary results – reduction in search space with increase/no loss in word coverage

- Performance of the overall system compared to LVCSR engine?