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Abstract 

 

We propose an algorithm for non-linear i-vector extraction. 

The algorithm is based on the manifold learning technique 

named Diffusion Maps (DM) and motivated by recent 

results that showed that the GMM supervectors reside on a 

low dimensional manifold. Our proposed method may 

further be processed using standard techniques such as 

Linear Discriminant Analysis (LDA), Within Class 

Covariance Normalization (WCCN) and Probabilistic LDA 

(PLDA). We demonstrate the effectiveness of our algorithm 

and compare its results with the state-of-the-art i-vector 

based PLDA algorithm on the NIST 2010 Speaker 

Recognition Evaluation (SRE).  
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1     Introduction 
 

During the last few years i-vectors [3] have become the 

standard front-end layer in most of state-of-the-art speaker 

recognition systems. I-vectors are Factor Analysis based 

method which provides a way to map the high dimensional 

GMM supervectors to a relatively low dimensional vectors, 

named i-vectors. Factor Analysis, as a subspace learning 

method, assumes the data to reside in a subspace and 

therefore is able to capture only linear structures. However, 

it was not until recently that Karam et al. [2] showed that the 

GMM supervectors in the GMM space are lying on a low 

dimensional manifold and that by the use of manifold 

learning techniques such as graph geodesics and ISOMAP 

[7] it is possible to improve classification error. 

     In this paper we replace the misleading assumption of 

linearity with an assumption that the GMM supervectors 

reside on a low dimensional manifold and propose an 

alternative non-linear way for i-vector extraction we name d-

vector extraction. The proposed algorithm is based on the 

DM framework and may further be processed using standard 

techniques such as PLDA [9]. 

We demonstrate the usefulness of our approach on the 

telephone core condition 5 of NIST 2010, and obtain 

significant error reduction. 

     The paper is organized as follows: In Section 2 we 

overview the DM framework. In Section 3 we explain in 

detail the proposed d-vector extraction algorithm. In Section 

4 we present the experimental setup and results. In Section 5 

we draw conclusions.     

 

2     Diffusion Maps 
 

Diffusion Maps (DM) [6] is a machine learning technique 

for non-linear dimensionality reduction. The method focuses 

on discovering the underlying manifold that the data has 

been sampled from.  

In this method a graph affinity matrix is built which is 

used to generate a diffusion process. As the diffusion 

process progresses, it integrates local geometries to reveal 

geometric structures of the data at different scales. Based on 

the revealed geometry, one can measure the similarity 

between two data samples at a specific scale. A diffusion 

map embeds the high dimensional data in a lower-

dimensional space D , such that the Euclidean distance 

between points in D  approximates the diffusion distance in 

the original feature space. The dimension of D is 

determined by the geometric structure underlying the data, 

and the accuracy by which the diffusion distance is 

approximated.  

In our setup, the high dimensional feature vectors are the 

GMM supervectors that represent different sessions in the 

GMM supervector space G , we name them as g-vectors. 

DM is performed in order to map the g-vectors to l -

dimensional d-vectors in the diffusion space D . From now 

on, we will use these notations to differ between the original 

high dimensional feature space, and the low dimensional 

diffusion space.  The rest of this section discusses the DM 

algorithm in more detail.  

Given a development set of n g-vectors 1{ }n

i ix G   the 

first step in the DM algorithm is to define an affinity kernel 

over G . A common choice is the Gaussian kernel: 
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where ( , )i jc x x  is a metric and the   parameter determines 

the scale or size of the neighborhood we trust our local 

similarity measure to be accurate in. In practice,   is 

chosen empirically or according to prior knowledge of the 

geometric structure and density of the data. A method for 

automatic configuration of   was proposed in [4]. 

In this way, we can define a full undirected graph where 

the g-vectors are the nodes, and the weights of the edges are 

determined according to the diffusion kernel in Eq. (1). We 

then define a random walk on this graph by converting the 

affinity kernel to a probability function as follows:  

 

1

( , )
( , )

( , )

i j

i j n

i h

h

k x x
p x x

k x x





 

 

This results in a transition Markov matrix P  in which the 

entry , ( , )i j i jP p x x  is the probability of transition from 

node 
ix  to node 

jx  in a single step. In the same way, tP  is 

a matrix in which the entry 
,

t

i jP  is the probability of 

transition from node 
ix  to node 

jx  in t steps. 

A diffusion distance after t  steps is defined as follows:  
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A spectral decomposition of P results in a complete set of 

eigenvalues 0 11 ... n       and left and right 

eigenvectors that satisfies: 
i i iP   . Then, we define a 

mapping 
1:{ }n

t i iM x D   as follows: 
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 where ki  indicates the i -th element of the k -th 

eigenvector of P and l is the dimension of the diffusion 

space D . In [6]. it has been shown that for 1l m   the 

following equation holds:  
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 This result justifies the use of squared Euclidean distance in 

the diffusion space. Of course in practice one should pick 

1l m  according to the spectral decay of 1( )n

i i  . This 

decay is determined by complexity of the intrinsic 

dimensionality of the data and the choice of the parameter 

 .   

Figure 1 shows an illustrative example for a diffusion 

process. Two alternative paths connect points on the 

manifold. The blue path is the longer one but is the one that 

follows the geometric structure of the manifold while the red 

path is the short one but does not follow the manifold 

structure.  As the number of steps in the diffusion process, 

t , increases, the probability of travelling along the red path 

also increases, since it consists of many short distance 

jumps. However, the probability of travelling along the blue 

path stays always small (and becomes smaller and smaller as 

t  increases) as it consists of long distance jumps. 

 

2.1. Out of sample extension 
 

So far, we addressed the situation when all g-vectors are 

given a-priori. However, we need to also address the 

situation where a new g-vector 
1 1{ }n

n i ix x   is introduced 

and we are asked to extract its corresponding d-vector. A 

naïve approach would be to repeat the whole process 

described above from scratch. Although this might be 

practical in offline applications, it is extremely inefficient 

and results in large amount overhead. Therefore, we propose 

the Nystrom extension [5]:  
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This extension extends the eigenvectors with one additional 

entry corresponding to the new g-vector while it is consistent 

 

Figure 1. As the diffusion process progresses, travelling 

along the blue path becomes more likely than travelling 

along the red one. 



 

 

on the development set 
1{ }n

i ix 
. This results in an extended 

mapping: 1 1

1:{ }nx n

t i iM x D 

   .  

 

3     D-Vector Extraction for Speaker 

Recognition 
 

Our main contribution in this work is the utilization of the 

DM framework for a non-linear method for i-vector 

extraction for speaker verification. This type of extraction 

results in a d-vector. The d-vector can be used independently 

or in conjunction with the traditional i-vector. The proposed 

method is divided into two steps: DM training and d-vector 

extraction.  
 

3.1. DM training 
 

In this step we train the DM model. The input to this phase 

is a development set of g-vectors (adapted GMM 

supervectors means)  
1

n

i i
g


, where each g-vector 

corresponds to a development session. First, following [10] 

we  normalize each 
ig  as follows : 

 
1/2 1/2( ) ( )i m d i dx w I g      

 

where 
d  is the  
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sample mean vector, 

d is the 

 
1

n

i i
g


 diagonal sample covariance matrix, w  is the vector 

of stacked mixture GMM weights,   is the Kronecker 

product  and 
mI  is the identity matrix of size m , which is 

the g-vector dimension. Note that this type of normalization 

generates a new set of normalized g-vectors 

1{ }n

i i dx G G    . Then, by applying the DM algorithm 

to
dG , we learn the structure of the underlying speaker 

manifold that resides on G . This is done by defining a 

mapping :t dM G D  as described in Section 2. In this 

work we chose to use the following affinity kernel: 
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where ,i jx x G and ( , )c    is the cosine distance. In this way 

each g-vector is mapped to a corresponding l - dimensional 

d-vector.  

The computational complexity of the training phase is 

reduced to the complexity of spectral decomposition of P. 

Note that the decomposition is carried out only for the first l 

eigenvectors and eigenvalues. The size of P is determined by 

the size of the development set. 
 

 

3.2. D-vector extraction 
 

As mentioned in Section 2, the mapping 
tM  is defined only 

on the domain 
dG  (the normalized development set). 

Therefore, in case of a new test g-vector, \ dx G G , 
tM  

has to be extended to  : { }x

t dM G x D   in order to 

estimate the new coordinates of x  in D . For this task we 

use the Nystrom extension according to Eq. (2).  

The computational complexity of d-vector extraction is 

determined by the size of the development set and the 

complexity of the chosen diffusion kernel. 
 

4     Experimental Framework and Results 

4.1 Front-end 

The front-end we use throughout this paper is based on Mel-

frequency cepstral coefficients (MFCC). An energy based 

voice activity detector is used to locate and remove non-

speech frames. The final feature set consists of 12 cepstral 

coefficients augmented by 12 delta and 12 delta-delta 

cepstral coefficients extracted every 10ms using a 32ms 

window. Feature warping [1] is applied with a 300 frame 

window. We use a GMM order of 1024 for estimating 

sufficient statistics for i-vector extraction and for estimation 

of supervectors for d-vector extraction. 

 

4.2. PLDA 
 

PLDA [9,11] jointly models speaker and channel variability 

in the i-vector (or d-vector) space. A speaker and channel 

dependent i-vector (or d-vector) can be defined as 

 

w = w +Vy + Ux + ε                              (4) 

 

where w denotes the observed i-vector (d-vector), w  is a 

global mean i-vector (d-vector),  y and x are the speaker and 

channel factor respectively, V and U are the eigenspeaker 

and eigenchannel matrices. ε is a residual vector that is 

assumed to be distributed according to the standard normal 

distribution. 

The PLDA model is trained on a development data for a 

given eigenspeaker rank and a given eigenchannel rank. In 

verification phase, the verification score has a closed form 

expression which can be found in [11].  

 

4.3 Evaluated systems 
 

Our baseline system is a gender-dependent i-vector based 

Gaussian-PLDA system inspired by [11]. We set the 

dimension of the i-vectors to 400. The Gaussian-PLDA 

backend processes length-normalized i-vectors by first 

applying LDA for obtaining a dimensionality reduction to 

250. The PLDA model we use is configured to have 200 



 

 

eigenspeakers and 200 eigenchannels. We do not apply any 

sort of score normalization (as we found score normalization 

to degrade accuracy). 

     The gender-dependent d-vector based PLDA system is 

similar to the i-vector based PLDA system, except for the 

substitution of the i-vectors with d-vectors. In the DM 

training phase we chose the following set of parameters: l 

(dimension) = 800, 6  and 1t  . We found out that 300 

eigenspeakers and 300 eigenchannels were optimal for our 

setup. 

     The third system fuses between the i-vector based PLDA  

and the d-vector based PLDA systems by applying a simple 

average (with equal weights) to the score level. 
 

4.4. Datasets 
 

We trained a gender-independent UBM on 12,711 sessions 

from Switchboard-II, NIST 2004 speaker recognition 

evaluation (SRE) and NIST-2006-SRE. For training the i-

vector and d-vector extractors we used 16989 (female) and 

11145 (male) telephone sessions from NIST 2004-2006 and 

2008 SREs. We ran experiments on the telephone-only 

condition 5 of NIST-2010-SRE [12]. 
 

4.5. Results 
 

Table 1 presents comparisons of the baseline i-vector based 

PLDA system with the proposed d-vector based PLDA 

system and the fused system. The results are measured in 

Equal Error Rate (EER), old-minDCF [12] and new-

minDCF [12]. 
 

Table 1. A comparison of i-vector PLDA to d-vector 

PLDA and the fused system on NIST-2010 telephone 

only condition 5. 

System EER (%) 
Old min-

DCF 

New min-

DCF 

Males 

i-vector PLDA 2.5 0.138 0.507 

d-vector PLDA 2.3 0.131 0.307 

Fused system 1.7 0.103 0.279 

Females 

i-vector PLDA 2.7 0.132 0.431 

d-vector PLDA 2.3 0.127 0.322 

Fused system 2.0 0.096 0.291 

 

Table 2 summarizes the gains we get using the d-vector 

based PLDA system and using the fused system compared to 

the baseline i-vector based PLDA system.  We see that the 

d-vector based PLDA system improves over the baseline by 

an average of 11.5%, 4.5% and 32.5% for EER, old-

minDCF and new-minDCF respectively, and the fused 

system improves over the baseline by 29%, 26.5% and 39% 

for EER, old-minDCF and new-min-DCF respectively. 
 

Table 2. Summary of the improvements for the d-

vector PLDA system and the fused system compared 

to the baseline i-vector PLDA system.. Results are in 

relative improvement (%) 

Measure 
d-vector PLDA 

system 

Fused 

system 

Males 

EER 8 32 

Old min-DCF 5 25 

New min-DCF 40 45 

Females 

EER 15 26 

Old min-DCF 4 28 

New min-DCF 25 33 

 

 

5     Conclusion 
 

In this paper, we presented the d-vector extraction 

algorithm. This algorithm can be used as a non-linear 

alternative to the traditional i-vector extraction algorithm. 

We demonstrated the effectiveness of d-vector extraction 

algorithm when it is used as a front-end layer for a PLDA 

based speaker recognition system. 

We managed to obtain reduced error rate using the d-

vector based method compared to using i-vectors. The error 

reduction was in the range of 4-40%, depending on the 

gender and error measure. 

Furthermore, a simple fusion of the d-vector based 

system and the i-vector based system resulted in significant 

error reductions of 25-45% compared to the baseline, 

depending on the gender and error measure. 
. 
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