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ABSTRACT  

We present a Bayesian network learning method that can support optimization processes in 

industrial and service systems. The proposed method aims at learning the space of unknown 

systems from real data by a Bayesian network. While the underlying learning objectives of 

previous works were to best approximate the joint probability distribution of the learned domain, 

we aim at best approximating the conditional probability distribution of a predetermined target 

variable as a function of the rest of the domain variables. We prove that the proper Bayesian 

network for such a task is one for which the sum of mutual-information weights on the target 

variable and among its obtained parents is maximized.  To address the trade-off between the 

network’s complexity and its accuracy, we suggest information-gain criteria.  

 

1. INTRODUCTION  

In this work, we suggest a learning model that supports optimization of processes and 

systems, for which the exact underlying physical model is unknown. In particular, we propose 

a Bayesian network model that maximizes a predetermined target variable, as a function of 

the most influencing conrollable variables that describe the process. 

Bayesian network (BN) is a probabilistic model representing the relations between 

variables in a certain domain with stochastic properties. Bayesian networks have been 

extensively employed in various applications in engineering and decision making. Essentially, 

a BN encodes the joint probability distribution 𝑃(𝐗) of the domain’s random variables, and 

since BNs can be presented graphically they are fairly intuitive (Heckerman [‎1], Ben-Gal [‎2]). 

A Bayesian network B(G,𝚯) can often be used to represent the joint probability 

distribution of a vector of random variables =  𝑋1 , … , 𝑋𝑁  . The structure G(𝐕, 𝐄) is a directed 
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acyclic graph (DAG) composed of 𝐕, a vector of nodes representing the random vector 𝐗, and 

𝐄, a set of directed edges connecting the nodes. An edge 𝐸𝑗𝑖 = 𝑉𝑗 → 𝑉𝑖  manifests dependence 

between the variables  𝑋𝑗  and 𝑋𝑖 , while the absence of an edge demonstrates independence 

between the variables. A directed edge 𝐸𝑗𝑖  connects a parent node 𝑉𝑗  to its child node 𝑉𝑖  

(Heckerman [‎1], Yehezkel and Lerner [‎3]). We denote by  𝑍𝑖 =  𝑋𝑖
1 , … , 𝑋𝑖

𝐿𝑖  the set of the 

parent variables of the random variable 𝑋𝑖’s, represented by the set of parent nodes 𝐷𝑖 =

 𝑉𝑖
1, … , 𝑉𝑖

𝐿𝑖  in G. The set of parameters 𝚯 holds local conditional probabilities over 𝐗, 𝑝 𝑥𝑖|𝑧𝑖  

that quantify the edges for each node state 𝑥𝑖  (of the form 𝑉𝑖 = 𝜐𝑖  where 𝜐𝑖 ∈  𝜐𝑖
1, … , 𝜐𝑖

𝑠𝑖 , the 

values that node 𝑉𝑖  can take) and each state 𝑧𝑖  (a conjunction of states  𝑥𝑖
1 ∩ …∩ 𝑥𝑖

𝐿𝑖) of  𝑍𝑖 . 

A BN can be learned from observable data. Numerous BN learning methods have been 

suggested in recent years (e.g., Chickering [‎4], Heckerman [‎1], Heckerman et al. [‎5], Cheng et 

al. [‎6] and Pearl [‎7]). In particular, the K2 (Cooper and Herskovits [‎8]) and the PC (Spirtes et 

al. [‎9]) are two predominant BN learning algorithms. 

We follow here is the adding-arrows (Williamson [‎10]). The adding-arrows is an 

algorithm which attempts to maximize the total information weight for the BN. Williamson 

[‎10] showed that a BN, satisfying some arbitrary constraint, that best approximates a joint 

probability distribution is one for which mutual information (MI) weight is maximized. He 

generalized the arguments presented earlier by Chow and Liu [‎11] regarding spanning trees. 

Chow and Liu proved that minimizing the Kullback–Leibler (KL) divergence between 

distributions is equivalent to maximizing the total MI weight of the tree. Yet, their underlying 

objective was to best approximate the joint probability distribution describing the domain, 

while they overlooked the fact that BNs are often used for system optimization, where some 

of the variables might influence the target variable more than others. Our objective, thus, is to 

best approximate the conditional probability distribution of the target variable, conditioned on 

the influencing variables within the domain, as similarly proposed by Ginsburg and Ben-Gal 

[‎12] in a different context of design-of-experiments.  

The proposed approach, comparing to that of Williamson [‎10], suggests to reduce the 

BN’s complexity while taking a predefined target variable into account, already at the BN 

learning stage. In this short paper we present the basic principles of the Targeted Bayesian 

Network Learning (TBNL) --  a BN learning method oriented for optimization purpose. 
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2. AN ILLUSTRATIVE AND MOTIVATED EXAMPLE 

Consider the example in Table 1. Let us define the variable 𝑋3 as our target variable. The 

TBNL algorithm draws an edge at a time - the one for which IG weight is the greatest.  

Table 1: Illustrative Example of data
1
 

Case 𝑋1  𝑋2  𝑋3  𝑋4  
1 1 1 1 2 

2 1 1 2 2 

3 1 1 2 2 

4 1 2 2 3 

5 1 2 2 3 

6 1 2 2 3 

7 2 2 1 1 

8 2 2 1 1 

9 2 2 1 1 

10 2 2 2 1 

11 2 2 2 1 

12 2 2 2 1 

 

Let us limit the number of parents to one (𝐾 = 1). Fig. 1 and Fig. 2 show the results 

obtained by the adding-arrows and by the TBNL algorithms respectively, both with 𝐾 = 1, (a 

CL compatible with regard to the former). The total information weight ascribed to the BN 

obtained by the adding-arrows is 1.811 bits. This is comparing with 1.5 bits obtained by the 

TBNL. Although the weight of the network learned by the TBNL is considerably smaller, the 

TBNL fulfills our pursued objective, that is, the requirement for a target variable. 

Notwithstanding, the outstanding consequence of the BN shown in Fig. 1 is that the target 

variable 𝑋3 does not appear there at all. This is where the profound gap comes in: while the 

result shown in Fig. 1 would be satisfying for Williamson’s and Chow’s & Liu’s objective, it 

bears an unfeasible result for our objective. Our objective in this case is to support the 

optimization of the target variable 𝑋3 via the other variables which comprise the entire joint 

distribution. It will be shortly shown that such an objective may be accomplished by 

maximizing the information weight relative to the target variable and the total information 

weight among its parents, rather than just maximizing the total information weight of the BN. 

 

3. THE TARGETED BAYESIAN NETWORK LEARNING (TBNL) METHOD 

Our underlying assumption is that a target variable 𝑋𝑖 ∈ 𝐗 is given and that we aim at best 

approximating its probability distribution 𝑝(𝑋𝑖) as a function of the entire domain. Namely, 

we wish to represent 𝑝 𝑋𝑖 =  𝑝 𝑋𝑖 |𝑥𝒊
𝒄 𝑥𝒊

𝒄∈𝑋𝒊
𝒄 𝑝 𝑥𝒊

𝒄  by 𝑞 𝑋𝑖 =   𝑝 𝑋𝑖  𝑧𝑖 𝑝(𝑥𝒊
𝒄)𝑥𝒊

𝒄∈𝑋𝒊
𝒄 , where 𝑥𝑐  

                                                           
1‎This example has been taken from Shkolnik [‎13]. 
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denotes the atomic states of 𝑋𝑐 = 𝐗\𝑋𝑖  and 𝑧𝑖  denotes the parents of 𝑋𝑖,,. 𝑍𝑖 ⊆ 𝑋𝑐 ∈ 𝐗. For any 

subset of variables 𝐗′ ⊆ 𝐗 we shall denote with the respective literals 𝐗′𝑐 ∈ 𝐗 the 

complementary subset of nodes in 𝐗 that are not in 𝐗′ , such that 𝐗′ ∩ 𝐗′𝑐 =  ∅ and 𝐗′ ∪ 𝐗′𝑐 = 𝐗. 

 By the law of total probability we know that 𝑝 𝑥𝑖 =  𝑝(𝑥1 , … , 𝑥𝑛)𝑋𝒊
𝒄 . Each element within 

the summation is a component of 𝑝 𝐗 = 𝑝(𝑋𝑖 |𝑋𝒊
𝒄)𝑝(𝑋𝒊

𝒄). If one wishes to approximate 

𝑝(𝑋𝑖 |𝑋𝒊
𝒄) by 𝑞1 =  𝑝(𝑋𝑖|𝑍𝑖), then the approximation for 𝑝 𝑋𝑖  becomes 

𝑞 𝑋𝑖 =   𝑝 𝑋𝑖  𝑧𝑖 𝑝(𝑥𝒊
𝒄)𝑥𝒊

𝒄∈𝑋𝒊
𝒄  where 𝑍𝑖 ⊆ 𝑋𝒊

𝒄 and therefore it is also a probability distribution 

after normalization, namely,  

𝑝 𝑍𝑖 = 𝑃𝑟 𝑍𝑖 =  𝑧𝑖1
, … , 𝑧𝑖𝑘  =  𝑝(𝑥1 , … , 𝑥𝑛)𝑍𝑖

𝑐 = 𝑝(𝐗) 𝑝(𝑍𝑖
𝑐 |𝑍𝑖)   

For simplicity of literals annotation, we shall denote 𝑍𝑖
𝑐 ∩ 𝑋𝒊

𝒄 with 𝑍 𝑖  - the variables in 𝐗 for 

which representing nodes are neither the parents of 𝑋𝑖  nor 𝑋𝑖  itself. By that definition 𝑋𝒊
𝒄 =

𝑍𝑖 ∪ 𝑍 𝑖  and hence 𝑑 𝑝 𝑋𝑖 |𝑋𝒊
𝒄 ||𝑝 𝑋𝑖 |𝑍𝑖  =  𝑝 𝑥𝑖|𝑥𝒊

𝒄 𝑙𝑜𝑔 𝑝 𝑥𝑖 |𝑥𝒊
𝒄 𝑝 𝑥𝑖|𝑧𝑖   𝑥1 ,…,𝑥𝑛∈𝐗  =

 𝑝 𝑥𝑖|𝑥𝒊
𝒄 𝑙𝑜𝑔 𝑝 𝑥𝑖 , 𝑧 𝑖 |𝑧𝑖  𝑝 𝑥𝑖 |𝑧𝑖 𝑝 𝑧 𝑖|𝑧𝑖    𝑥1 ,…,𝑥𝑛∈𝐗 ≡ 𝐼 𝑋𝑖 ; 𝑍 𝑖 |𝑍𝑖 . Accordingly, we obtain 

𝑑 𝑝 𝑋𝑖 |𝑋𝒊
𝒄 ||𝑝 𝑋𝑖 |𝑍𝑖  = 𝐼 𝑋𝑖 ; 𝑍 𝑖 |𝑍𝑖  (1) 

Eq. (1) suggests that minimizing the KL distance between 𝑝 𝑋𝑖 |𝑋𝒊
𝒄  and its estimator 𝑞1 =

𝑝 𝑋𝑖 |𝑍𝑖  is equivalent to minimizing the IG between 𝑋𝑖  and 𝑍 𝑖  conditional on 𝑍𝑖 . This is 

similar to maximizing 𝐼 𝑋𝑖 ; 𝑍𝑖  over all possible sets of 𝑍𝑖 ∈ 𝐗.  

As to 𝑝 𝑋𝒊
𝒄 , by virtue of Williamson’s proof, we know that 

𝑑 𝑝 𝑋𝑖
𝑐 ||𝑞 𝑋𝑖

𝑐  = −𝐻 𝑝 −  𝐼(𝑋𝑗 ; 𝐷𝑗 )𝑋𝑗∈𝑋𝑖
𝑐 +  𝐻(𝑝|𝑋𝑗 )𝑋𝑗∈𝑋𝑖

𝑐  (2) 

Eq. (2) governs the theorem that a BN that best approximates 𝑝 𝑋𝒊
𝒄  is one for which MI 

weight is maximized, i.e., 𝑀𝑎𝑥  𝐼(𝑋𝑗 ; 𝐷𝑗 )𝑋𝑗∈𝑋𝒊
𝒄 . Now, if one represents 𝑝 𝑋𝑖  by 

 𝑞 𝑋𝑖 =   𝑝 𝑋𝑖  𝑧𝑖 𝑝 𝑧𝑖 𝑧𝑖∈𝑍𝑖  exclusively by a BN, then he gets that  

𝑑 𝑝 𝑍𝑖 ||𝑞 𝑍𝑖  =  𝑝 𝑧𝑖 𝑙𝑜𝑔
𝑝 𝑧𝑖 

 𝑝 𝑋𝑗 |𝑧𝑗  𝑋𝑗∈𝑍𝑖
𝑧𝑖∈𝑍𝑖

= −𝐻 𝑍𝑖 −  𝐼(𝑋𝑗 ; 𝑍𝑗 )𝑋𝑗∈𝑍𝑖
+  𝐻(𝑝|𝑋𝑗 )𝑋𝑗∈𝑍𝑖

 (3) 

Minimizing the term − 𝐼(𝑋𝑗 ; 𝑍𝑗 )𝑋𝑗∈𝑍𝑖  is equivalent to Williamson’s result, only within 

𝑍𝑖 ∈ 𝑋𝒊
𝒄. Finally, as a result of eqs. (1) and (3) we obtain that 

𝑀𝑖𝑛  𝑑 𝑝 𝑋𝑖 ||𝑞 𝑋𝑖     𝑍𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑍′∈𝑋𝒊
𝒄 𝐼 𝑋𝑖 ; 𝑍′   & 𝑀𝑎𝑥   𝐼(𝑋𝑗 ; 𝑍𝑗 )𝑗 :𝑋𝑗∈𝑍𝑖   

This process holds independently for any desired 𝑋𝑖 ∈ 𝐗, and therefore can be recursively 

applied for each variable 𝑋𝑗 ∈ 𝑍𝑖 in  and so forth. As a result, the obtained BN can be built such 

that each variable is best predicted as well as explained by other variables in the domain, 

where the entire network is oriented towards the target variable. 

The proposed method, the Targeted Bayesian Network Learning (TBNL) employs a 

recursive procedure that can be applied on any given current variable and any set of potential 
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parents. We define minimum percentage relative information gain (PRIG) as a quantitative 

parameter for setting up an information-based constraint that serves as a stopping condition. 

For any variable 𝑋 ∈ 𝐗, with parent variables set 𝑍 ∈ 𝐗, and a potential parent 𝑍′ ∈ 𝐗, the 

stopping condition of the TBNL by this parameter is when 𝐼 𝑋; 𝑍′|𝑍 𝐻 𝑋  × 100 ≤ 𝑃𝑅𝐼𝐺. The 

range of the PRIG is [0-100], where zero implies that the procedure will add edges from each 

potential parent, except for those contributing a zero weight, whereas 100 implies that the 

current node will not have parents. 

 

 

Fig. 1: A Bayesian network resulted 

from the adding-arrows algorithm by 

example 1 with at most one parent allowed 

for each node. 

 

Fig. 2: Bayesian network resulted from  

the TBNL algorithm by example 1 with at 

most one parent allowed for each node. 

 

Gruber and Ben-Gal [‎14] suggest additional constraints criteria through information measures 

in a detailed and full disscusion regarding complexity considerations, including a practical 

example.  

 

4. CONCLUSIONS 

We show that the best approximation to the marginal probability distribution of a given 

target variable as a function of the entire domain is the one that i) maximizes the MI weight 

between the target variable and its potential parents; and ii) given those parents, it maximizes 

the total MI weight within the rest of the domain variables. Further to that, we saw that 

maximizing the total MI weight solely within those parents suffices that goal and can reduce 

the computation cost dramatically. 

We claim that the proposed TBNL algorithm handles well the trade-off between 

information gain and complexity when learning a BN from data. Having drawn a decision line 

of complexity as a function of the PRIG, one may be able to better control the model’s 

accuracy and computation cost. 

 

𝐼 𝑋4; 𝑋1 = 1 

𝐼 𝑋4; 𝑋2 = 0.811 𝐼 𝑋4; 𝑋1 = 0.189 

𝐼 𝑋3; 𝑋4 = 1 

𝐼 𝑋1; 𝑋2 = 0.311 
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