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Abstract— Phonetic-search is a method used to enable fast search 

of spoken keywords within large amounts of audio recordings. 

The phonetic search process consists of two stages – the indexing 

phase, where a phonetic lattice is constructed, and the search 

phase, where keywords are searched in this lattice. The 

performance of phonetic search systems is highly sensitive to the 

accuracy of the phonetic recognition, and therefore acoustic 

model training requires substantial amounts of audio and 

linguistic resources. Recently, there is a growing demand for 

applications that require support for keyword spotting in many 

different languages, including under-resourced languages. 

Supporting such languages, however, poses a substantial 

challenge for phonetic-search, since achieving merely reasonable 

performance requires a lot of training data. In the current 

research presented here, we propose methods for supporting a 

new language (the target language), while coping with limited 

resources, by using existing acoustic models of another language 

(the source language). In the indexing phase, acoustic models of 

the source language are used to generate phonetic lattices. Then, 

the search for keywords in the target language is performed over 

the recognized lattices. The search is performed by using a cross-

language phonetic mapping between the target and source 

language phonemes. This paper presents methods for cross-

language phonetic-search configurations, which depend on the 

amount of target language available data. Phonetic-search 

experiments were performed on Spanish as a target language and 

using American-English and Levantine Arabic as source 

languages. Results are compared to standard monolingual 

acoustic modeling in Spanish and show that it is possible to 

achieve reasonable applicable accuracy for retrieval of spoken 

words using different combinations of phonetic mappings. 

Keyword-spotting; phonetic-search; under-resourced languages 

I. INTRODUCTION 

There is a growing demand for supporting new languages 
in KeyWord Spotting (KWS) and other Automatic Speech 
Recognition (ASR) based applications. Supporting a new 
language requires a long and costly process of data collection 
and training of new acoustic models. Moreover, in some cases, 
and particularly for KWS in “exotic languages”, sufficient 
training data is not available, which altogether impedes the 
development of the application. 

Since the 90’s, research has focused on two different 
approaches for coping with this challenge. One approach uses 

multilingual phoneme sets and modeling [1], and the second 
employs adaptation of acoustic models from existing languages 
to new ones [2]. The multilingual approach involves a 
construction of a global phone inventory suitable for a large 
group of languages [3]. The second approach either generates 
or adapts new acoustic models either by using manual or semi-
automatic phoneme mappings [2], or by performing acoustic 
adaptation using a small corpus of the new language [4]. A 
recent study suggested using existing well-trained models from 
a few source languages for unsupervised transcription 
generation for training the under-resourced target language [5]. 

The methods of the latter two studies ([4] and [5]) 
involved using source language acoustic models for 
recognition in a target language, where some adaptation has 
been applied after the initial mappings and alignments. 
However, all such attempts were aimed at Large Vocabulary 
continuous Speech Recognition (LVCSR) or Language ID 
applications and not at keyword spotting. 

Our research seeks to consolidate a methodology for 
supporting phonetic search (PS) in a new target language 
using mappings between a well-explored source language and 
the target language. A system employing this methodology 
will be able to use acoustic models of the source language in 
order to find keywords in the target language, without the need 
for large language infrastructures (i.e. databases) and without 
training or adaptation of acoustic models. PS is particularly 
suited for such a configuration for the following reasons: (1) 
the phonetic lattice represents the acoustic content of the 
speech; (2) the search is carried out through a series of “soft” 
decisions, depending on likelihoods into which mapping costs 
can be easily incorporated; (3) a word-level language model is 
not required. 

This paper presents two aspects of our methodology: 
phonetic-mappings – where both linguistic based and 
statistically derived mappings are examined; and the 
contribution of a phonetic language model in the lattice 
generation stage. 

II. METHODS 

Our cross-language method uses acoustic models of a well-

resourced language to process recordings in another language 

in the indexing phase of phonetic search. The keyword search 

in the target language is performed over the recognized 
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phonetic lattices generated, using a cross-language phonetic-

mapping between the target and source language phonemes. 
Three languages were investigated in this study: English 

and Levantine Arabic as source languages and Spanish as the 
target language. The phonemic inventory of each language was 
set according to the following: English – 39 phonemes based 
on the DARPA phonetic alphabet [6]; Arabic – 43 phonemes 
based on the Buckwalter Transliteration [7]; Spanish – 31 
phonemes based on SAMPA [8]. 

A. Training of acoustic models 

The source languages – English and Arabic – had ample 
speech and language resources. Acoustic models were trained 
for both languages using standard HTK tools. The feature-set 
used was 39 features per frame (energy plus 12 Mel-Cepstrum 
Coefficients, with the first and second derivatives), calculated 
over 25 milliseconds frames with 15 milliseconds overlap. 
Model’s configuration was 5 tied-state HMM for each context 
dependent phoneme (with 3 emitting states), where each state’s 
output probability was modeled by a mixture of 16 Gaussians 
with diagonal covariance matrices. 

B. Cross-language phonetic mapping 

The cross-language phonetic mapping is a transformation 
from the source language’s phoneme set to the target 
language’s phoneme set.  Different types of cross language 
mappings can be used, depending on the availability of audio 
data in the target language: Pure linguistic knowledge is 
applicable when no sufficient target language data is available, 
while statistical learning of mappings is possible when a small 
amount of acoustic data in the target language is available. In 
our methodology, the linguistic mapping was required in both 
tests, since it was also used as a bootstrap for the statistical 
learning. 

The linguistic mapping between the language pairs was 
based on phonologic similarities, a notion expressed in [9] as 
follows: “languages share the same basic architectural blueprint 
and features: similar components, types of rules, units, 
constraints of these units, functions of the system, and 
cognitive basis.” [9: p. 2]. The mapping procedure is thus 
designed to “close the gap” between the phoneme sets of two 
languages, the complexity of which is reflected, for example, in 
the vowel mapping of English to Spanish: The Spanish vowel 
set is like most Latin languages, relying on five vowels /a/, /e/, 
/i/, /o/ and /u/. These vowels are represented in the English 
sound system. However, English also employs an additional 
eight vowels on average (a total of 13). A bilingual research 
[10] showed that a Spanish-speaker trying to speak English 
would be expected to create additional vowel sounds that are 
not native to her. On the contrary, an English-speaker would be 
expected to compress her speech to rely on less than half of the 
normal number of vowels used.” [10: p. 5]. The same “gap” 
between the two languages exists in the phonetic mapping. 

In our initial mapping each target phoneme was mapped to 
a single source phoneme, representing the closest acoustic 
counterpart in the source language, according to phonetic and 
articulation manners. For example, the Spanish [a] vowel, as in 
[paDres] (Spanish for ‘parents’) was mapped into the Arabic 
[a], as in [baEdayn[ بعدين (Arabic for ‘then,’ ‘later’). This 
Spanish  phoneme was also mapped to the English [AA], as in 

[PAAD] ‘pod’, or ‘father’ (in some dialects), although the 
Spanish phoneme is pronounced closer to the front of the 
mouth and thus may be interpreted by most English speakers as 

// or // [9], which correspond respectively to [AE] and [AO] 

in the DARPA transcription method. Our second, broader 
transformation added the possibility of a target phoneme 
mapping into more than one source phoneme. The two 
mapping methods led to different scenarios in the recognition 
and search phases. The results presented in this paper use the 
latter transformations, since our preliminary experiments 
showed their advantage over the one-to-one transformation. 

C. Keyword search on a phonetic lattice 

Keyword search over a given phonetic sequence is a pattern 
matching problem. We use the following notations: 

  {       } is a series of   observation vectors. 

  {       } is a recognized sequence of   phonemes. 

  {       } is a searched pattern of   symbols. 

A keyword search is based on the likelihood  (   | ) - 
the probability of observing   and recognizing  , given that a 
particular keyword   was pronounced. Using the simple 
Bayes’ rule we obtain, 

 (   | )    ( |   ) ( | ),  (1) 

and applying the Markov chain relation,      , 
yields, 

 (   | )    ( | ) ( | ).   (2) 

Conveniently, the result in Eq. (2) is composed of two 
independent types of conditional probabilities. The left term, 
 ( | )  is the “acoustic” probability, and the right term, 
 ( | )  can be considered as the “cross-phoneme (series)” 
probability. The major advantage of this solution is that the 
acoustic probabilities can be pre-calculated and stored as a 
phonetic lattice in the indexing phase, regardless of the 
searched keywords. The search process thus requires only the 
calculation of the “cross-phoneme” probabilities over the 
various paths in the recognized lattice. 

We further simplify the process by assuming that the cross-
phoneme probabilities are context-independent. This leads to a 
naive derivation of the likelihood computation such that 

 (   | )    ( | )∏  (  |  )   ,  (3) 

where     is the examined path. Notice that    in the 
conditional probabilities,  (  |  )  can accommodate both 
insertion and deletion events. These phoneme-to-phoneme 
probabilities,  (  |  ) are pre-defined similarities in the system 
and are used by the search mechanism to compute the pattern 
matching costs. In practice,  ( | )  is computed through a 
dynamic-programming algorithm searching for the best 
matching path using  (  |  ) for the likelihood scoring. 

D. Cross-language phonetic search 

Assuming that the acoustic model parameters of the source 
language remain fixed, we address two higher level issues of 
the cross-language PS. The first issue is the influence of a 
phonetic language model used by the phonetic recognizer. This 



relates to phonotactic constraints (realized as bi-gram transition 
probabilities in the phonetic recognizer), as reviewed in the 
results section. The second issue is the phonetic mapping used 
in the search module. 

E. Learning statistical phonetic mapping 

In addition to using mappings determined by a linguist, we 
implemented a learning mechanism which we hypothesized 
could improve the accuracy of the mappings when little target 
language acoustic data is available. Namely, the learning 
mechanism estimates  (  |  )  where    represent source 

language phonemes, and    are the target language phonemes. 

This technique requires a small amount of target language data 
(in our case only one hour of speech), with the corresponding 
word-level transcriptions and lexicon, but without time-aligned 
segmentations. 

First, we constructed a confusion matrix to accumulate the 
confusions between the correct phonetic series of the target 
language (obtained from the lexicon) and the recognized 
phonetic series (obtained from looking at the best path in the 
lattice) of the source language. To achieve the best alignment 
between the two series, we use the dynamic-search algorithm 
with the linguistic phonetic mapping as similarity measures (so 
the mapping is used for bootstrapping the learning process). 
However, our initial experiments showed that applying this 
standard process for learning the empiric phonetic mapping 
resulted in a significant degradation in the performance of the 
KWS search. Performance was poor for both types of linguistic 
mapping – one-to-one or one-to-many. A deeper inspection 
revealed that the series’ alignment mechanism performed 
poorly since the initial linguistic mapping consisted of “pure” 
phoneme transformations and did not take into account 
acoustic mismatches and recognition errors. We therefore 
extended the mapping possibilities to include acoustic 
variations that were detected in the development set, as well as, 
other a-priori anticipated phonetic recognition errors. 
Moreover, a broader phone-to-phone mapping was added to 
cover confusions between phonemes belonging to the same 
Natural Class (NC). The NC mapping consists of three NC 
classifications: Plosives, quasi-periodic signals – Sonorants and 
voiced and voiceless Fricatives, which are considered as basic 
forms of speech signals. In our system, the linguist can provide 
mapping weights to the different possibilities, where less 
probable confusions are given lower weights. An example of 
this procedure is as follows: To map Arabic phonemes to the 
Spanish phoneme /b/ three weighted mapping options are 
given: 

b   < 1.0 >   b 

b   < 0.3 >   p 

b   < 0.1 >   d, k, t, g. 

The first two pairs are conventional transformations, but the 
mapping in the third reflects possible recognition errors. We 
used additional NC mappings (with lower weights) among 
plosives, vowels, nasals, and fricatives. The weighting of a 
phoneme-to-phoneme mapping followed a simple principle: 
The initial cross-lingual mappings were given a default weight 
of <1.0>, while possible in-class errors were given a small 
weight of <0.1> and probable errors between closely-
articulated phonemes (for example /b/ and /p/ that only differ in 

voicing) were given the weight of <0.3>. This approach proved 
capable of fixing the series’ alignment and enabling a robust 
statistical learning of the mapping. 

F. Languages and resources 

Phonetic-search experiments were performed on Spanish as 
a target language using American English and Levantine 
Arabic as source languages. Results are also compared to 
standard monolingual acoustic modeling in Spanish (trained on 
80 hours of speech).  

The cross-language PS was evaluated using four corpora: 
the Wall Street Journal portion of the Macrophone [11] that 
contains a collection of read sentences; Levantine Arabic 
Conversational Telephone Speech [12]; Fisher Levantine 
Arabic Conversational Telephone Speech [13] and Spanish 
SpeechDat(II) FDB-4000 [14]. The experimental test set 
includes one hour of speech from the Spanish SpeechDat 
corpus, and the search was performed on a list of keywords 
with three syllables or more. The development set for 
estimating the confusion matrices included another hour of 
speech. Phoneme recognition was performed using the HTK 
toolkit. 

III. RESULTS 

The initial experiment was performed over lattices 
generated by the original models (without any resource 
manipulation and using only the original source phonetic 
language model), where the search module used the linguist's 
phonetic mapping. Fig. 1 shows similar detection rates for both 
English and Arabic lattices, which were significantly lower 
than the monolingual reference in Spanish. 

 
Figure 1. Keyword spotting results on Spanish test set over lattices generated 

by different models. Spanish is the monolingual reference. 

 
Next we examined the influence of the phonetic LM in the 

recognition phase. Three configurations were tested: (1) source 
models with ergodic topology, (2) source models with their 
original phonetic LM, (3) a combination of the “optimal” 
Spanish phonetic LM with the acoustic models of the source 
language. By “optimal” we mean that a large scale lexicon and 
textual database can give us a robust phonetic LM for the target 
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language. Fig. 2 demonstrates the KWS performance of the 
described configurations for English as the source language. 
The results clearly indicate that using a good language model is 
imperative for improving performance. Furthermore, the results 
indicate that any given phonetic LM, even one from the source 
language, is better than a flat ergodic model. The configuration 
of acoustic English models combined with the “optimal” 
Spanish phonetic LM showed the best results. 

 
Figure 2. Keyword spotting results on Spanish test set on the best recognized 

path with different language model schemes. 

Fig. 3 presents the results obtained with the statistical 
phonetic mapping vs. the linguistic mapping. It is obvious that 
the monolingual system also benefits from using a more 
accurate mapping in the search phase. A more substantial 
improvement is observed in the cross-language configurations 
for English and Arabic. Indeed, when we inspected the 
statistical confusion matrices, the cross-language matrices were 
much less diagonal, reflecting the true probabilistic mapping. 
Hence, using this information in the search phase increased the 
detection rate by up to 20% absolute. 

IV. CONCLUSIONS 

This paper introduced methods for applying phonetic 
search in cross-language conditions when there are insufficient 
language resources in the target language. We focused on 
mapping methods between the source and target language 
phoneme sets, as well as, phonetic language model 
configurations. We proposed a methodology for adding 
Natural-Class mappings to the linguistic mapping bootstrap, to 
be used in the process of empirically learning confusion 
probabilities. Using the statistical learning based mapping in 
the search module boosted the performance significantly, 
achieving still lower but reasonable results in comparison to PS 
performance using the well trained target language models. 
The incorporation of different LMs in the recognition phase 
increased the search performance significantly. An important 
observation is that even using the language model of the source 
language is better than using an ergodic, non-restrictive 
topology. Future research in the phonetic search framework 
will be performed in order to improve results. One possible 

direction is to investigate acoustic model adaptation for varying 
amounts of target language data, beginning with either 
linguistically or statistically derived mappings. 

 
Figure 3. Keyword spotting results on the Spanish test set over lattices using 

different phonetic mappings for the search process. All configurations 

include the original language model. “Stat.Map" indicates statistical-
mapping. Other configurations use the linguist’s mappings. 
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