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Abstract: Obstructive sleep apnea (OSA) syndrome is 

a prevalent sleep disorder that affects 2% of women 

and 4% of men aged more than 50 years. OSA is 

associated with anatomical and functional 

abnormalities of the upper airway due to evolution of 

the speech production system. It is well known that 

anatomic and functional changes in the vocal tract 

components affect the acoustic parameters of speech; 

hence, our hypothesis is that there is a difference 

between speech characteristics of OSA-patients and 

non-OSA subjects, and that we can utilize this fact to 

design an automated system that will discriminate 

between the two groups. The database for this study 

consists of 103 male subjects recorded while reading 

a one-minute speech protocol in Hebrew, just before 

they underwent a full polysomnography 

examination; all the non-silence segments were used 

for the task of OSA/non-OSA classification in order 

to exploit all the information hidden in the speech 

signal (i.e., voiced, unvoiced phonemes, and 

transition states). Moreover, the system doesn't 

require an automatic or manual phoneme 

identification stage prior to the classification; that 

allows fast and low-complexity diagnosis of OSA 

patients. Results of 80.65% sensitivity and 80% 

specificity were achieved using the hold out 

validation method. 

Keywords: obstructive sleep apnea, speech signal 

processing, speaker recognition. 

 

I. INTRODUCTION 

Obstructive sleep apnea (OSA) syndrome is a prevalent 

sleep disorder in which complete or partial airway 

obstruction, caused by pharyngeal collapse during 

sleep, leads to choking, loud snoring, frequent 

awakenings, disrupted sleep, and excessive daytime 

somnolence. The obstruction of the airway can cause 

complete airflow absence (apnea) or reduction in the 

airflow (hypopnea). OSA syndrome is defined as five or 

more episodes of apnea or hypopnea per hour (apnea 

hypopnea index – AHI) with associated symptoms (e.g., 

excessive daytime sleepiness, snoring, fatigue) [1]. The 

main factors that encourage the upper airway to 

collapse are anatomical features and insufficient 

neuromuscular compensation during sleep [2]. 

Recent studies suggest that 4% of men and 2% of 

women aged more than 50 years suffer from 

symptomatic OSA [1]. With the increasing prevalence 

of obesity (which is most potent risk factor for OSA), 

the number of patients who suffer from OSA syndrome 

has significantly increased, and is expected to continue 

in the same direction in the future [1]. OSA is often 

associated with numerous complications such as cardio-

vascular disorders, stroke, diabetes, and depression [3]. 

 The gold standard diagnostic test for sleep apnea is 

polysomnography (PSG) during an entire night. The 

PSG usually consists of recordings of various biological 

signals, including electroencephalography (EEG), 

electrocardiography (ECG), and electromyography 

(EMG). PSG is time consuming, labor intensive, 

expensive, and uncomfortable for the patient; therefore 

many patients remain undiagnosed [3]. 

 Fox [4] performed a perceptual study that confirmed 

the clinical practice claim that some patients with OSA 

syndrome have abnormality in voice emission that 

makes it difficult to understand their speech. Fox has 

found that patients with OSA suffer from resonance, 

phonation, and articulation anomalies. In addition, 

different studies have confirmed that OSA is associated 

with anatomical and functional abnormalities of the 

upper airway due to evolution of the speech production 

system [5,6,7]. In fact, in most OSA patients the 

proportions between the upper airway soft tissue mass 

and the space made by the bony structure of the upper 

airway are higher than normal [2]. It is well known that 

anatomic and functional changes in the vocal tract 

components affect the acoustic parameters of speech; 

hence, it was suggested that some acoustic speech 

features of patients with OSA syndrome may be distinct 

from those of non-OSA subjects [6]. 

 Our hypothesis is that there is a difference between 

the speech characteristics of OSA-patients and non-

OSA subjects, and that we can utilize this fact to design 

an automated system that will discriminate between the 

two groups. 

 Previous studies with a similar hypothesis [8,9,10] 

were completely based on automatic and/or manual 

identification of phonemes prior to the classification 

stage. However, the segmentation procedure 

complicates the classification process, and might result 

in additive error whether it is done manually or 

automatically, especially when dealing with people who 

suffer from speech anomalies. Blanco [11] found that 

the performance of automatic phoneme identification 

system were significantly lower for subjects with OSA 

in comparison to healthy subjects. Moreover, previous 

studies have used only voiced phonemes, and ignored 
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the unvoiced speech segments that might contain 

valuable distinctive information as well. 

 In this study we have designed a system that uses 

potential patients’ speech recordings to automatically 

diagnose OSA, which is not dependent on phoneme 

segmentation and recognition. The classification system 

uses all the non-silence segments of the patient's speech 

signal, and therefore better exploits the hidden 

information in the speech signal and reveals the vocal 

tract's dynamics. Furthermore, analysis of all the non-

silence segments allows us to investigate phonation, 

resonance, and articulation differences between OSA 

and non-OSA subjects. We designed a simple Gaussian 

mixture model (GMM)-based classifier, using mel 

frequency cepstrum coefficients (MFCC), and MFCC's 

first and second derivatives only; in order to avoid over-

fitting and to find the most discriminative features a 

feature selection procedure was performed. Our goal is 

to use this system as a diagnostic tool for the early 

detection of OSA. 

 

II. METHODOLGY 

In order to create an automatic classification system for 

OSA diagnosis, speech signals of 103 subjects were 

analyzed. The signals underwent pre-processing; a 

voice activity detector was implemented and features 

were extracted. A GMM classifier was trained and 

validated using the hold out method. Figure 1 presents a 

block diagram of the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 Pre-processing and feature extraction 

Each digitized speech signal underwent a pre-

processing procedure of DC removal, and pre-

emphasizing; silence removal took place using a voice 

activity detector based on [12]. The signals were framed 

to 30 msec frames with 50% overlap. Forty-eight 

features were extracted: 16 MFCC, and their first and 

second derivatives, the ΔMFCC and the ΔΔMFCC, 

respectively. 

2.2 Model estimation 

Since the cepstrum’s density has the benefit of being 

well modeled by a linear combination of Gaussian 

densities [13], a GMM classifier was implemented in 

this stage. The GMM is defined as the weighted sum of 

M Gaussian component densities [14]. 
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with mean vector    and covariance matrix   . In this 

work, the classifier was trained on a subset of features 

selected via a feature selection procedure. Two models 

were designed to represent the probability density of 

each group: OSA (    and non-OSA (     . 

2.3 Feature selection 

In order to avoid over-fitting and to find the most 

discriminative features, a feature selection procedure 

was performed using the sequential forward selection 

algorithm [15]. In this work we have used the area 

under (AU) the receiver operating characteristic (ROC) 

curve as the criterion for feature selection. The AU was 

calculated via a k-fold cross-validation over the training 

data set. 

2.4 Validation 

After the model parameters were estimated in the 

training phase, validation procedure was conducted to 

evaluate the system's performance. Each subject of the 

validation data was tested over a non-OSA model and 

an OSA model and scored using log-likelihood ratio: 
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where  (     ) and  (      ) are the likelihood 

probabilities of the j
th

 feature vector   , given the model 

for OSA patients and non-OSA subjects, respectively, 

and N is the number of frames per subject. 

 

III. Experimental Framework 

The database for this research was constructed from 

speech signals of 103 male subjects, who were referred 

to a sleep clinic. Each subject was recorded using a 

digital audio recorder (Handy recorder "H4" by 

“ZOOM") reading a one-minute text protocol in 

Hebrew that was designed to emphasize certain 

characteristics of speech. We recorded at a sampling 

rate of 44.1 kHz and downsampled to 16 kHz (16 

Figure 1 - System block diagram. 
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Table 3 – Classification results of the suggested system. 

 true label O true label nO 

classified as O 80.65% 20% 

classified as nO 19.35% 80% 

O indicates OSA, nO indicates non-OSA. 

bits/sample). The text protocol included sustained 

utterance of vowels; specific long sentences containing 

considerable amounts of nasals and vowels; yes or no 

questions; and a list of isolated words. Immediately 

after speech recording, each subject underwent 

complete PSG examination; after examination, the PSG 

signals were analyzed and scored and an AHI value was 

given by the sleep clinic's medical stuff. Subjects' age, 

BMI, and AHI are summarized in Table 1. In order to 

avoid over-fitting the database was divided into two 

separate data sets: design (n=62) and validation (n=41). 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. Results and discussion 

The feature selection procedure resulted in a four-

dimensional feature subset presented in Table 2. Three 

out of four selected features belong to the ΔΔMFCC 

set; this result supports our hypothesis that using all the 

speech (non-silence) segments exploits the information 

that is hidden in the signal's dynamic, which expresses 

the transition states of the vocal tract. GMM order of 7 

has been proven to be the most efficient. The fact that a 

relatively low order was the most efficient isn't 

surprising since we deal with two classes' classification 

problem; higher order could represent different sub-

classes, such as age and accent, and therefore impair the 

results. 

 

 

 

 

 

 

 

 

 

 

System performances were evaluated using the 

validation data. Table 3 presents the classification 

system's performance and Figure 2 presents the ROC 

curve. Average correct classification is 80%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In [10] a classification system for the detection of 

severe OSA (i.e., AHI>30) was suggested; the study 

database consisted of 40 severe-OSA patients and 40 

non-OSA subjects. The classification system was 

mainly based on vowels and nasal segments that were 

automatically segmented from continuous speech prior 

to the classification stage. 85% sensitivity and 77.5% 

specificity were achieved. Although we didn't exclude 

patients from our research and dealt with the entire 

range of OSA severity (i.e., entire range of AHI) the 

performances are quite similar. 

In a previous study [16] a different database was 

used (97 males) for diagnosing OSA, while using only 

7 phonemes (\a\, \e\, \i\, \o\, \u\, \m\, \n\). Seven 

independent GMMs were designed for the OSA/non-

OSA classification problem, and a fusion process was 

performed to combine the scores of these classifiers. 

The system was tested using two modes that differ in 

the way the phonemes were segmented: manually or 

automatically. In the manual segmentation mode 86.2% 

sensitivity and 75% specificity were achieved, while in 

the automatic segmentation mode 82.4% sensitivity and 

80% specificity were achieved. When using the same 

algorithm presented in [16] on the database for this 

study, the results are 67.74% sensitivity and 80% 

specificity for the manual segmentation mode, while for 

Table 1- The subjects' information. 

Age 

average  ± 
STD 

BMI 

average ± 
STD 

AHI 

average ± 
STD 

Number 

of 
subjects 

 

Design 

57.0±13.3 30.5±5.5 27.1±19.4 47 OSA 

43.4±16.1 72.6±3.8 4.4±2.2 15 Non-

OSA 

53.7±15.1 29.8±5.3 21.6±19.5 62 Total 

Validation 

65.8±12.5 4..4±5.6 77.0±19.3 31 OSA 

43.3±16.2 27.3±3.5 4.4±2.2 10 Non-

OSA 

53.6±14.6 29.6±5.3 21.5±19.4 41 Total 

 

  
Figure 2 - Performance results evaluated over the validation 
data.  
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Table 2 – Selected features. 

Selection order Feature symbol 

1 c3 

2 ΔΔc12 

3 ΔΔc14 

4 ΔΔc16 

The selected features: the third MFCC, and the second 

derivatives of the 12th, 14th, and 16th. 



 

the automatic segmentation mode 64.52% sensitivity 

and 80% specificity were achieved. This decrease in 

results may be due to the fact that the database for the 

current study is more balanced (in terms of AHI, BMI, 

age, etc.) and includes more subjects. Comparing the 

results, one can see that the presented system 

outperforms the system that was suggested in [16]. 

Moreover, since the presented system doesn't require 

automatic and/or manual identification of phonemes 

prior to the classification stage, or the fusion of several 

classifiers, it has much lower complexity. 

 

V. Conclusions 

In this paper an automatic system for diagnosing OSA 

from speech was presented. The proposed method can 

be used for initial screening of potential OSA patients, 

and bring earlier diagnosis and treatment. Moreover, it 

can significantly reduce the number of patients referred 

unnecessarily to sleep clinics. 

The system is fully automated with low complexity, 

and is based on speech signal recordings only; therefore 

it allows effective, fast, patient-friendly, and low cost 

diagnosis of potential OSA patients. 
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