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Abstract—An azimuth steerable first-order superdirectional
microphone response can be constructed by a combination of
a monopole and two orthogonal dipole microphones. We derive
a novel adaptive null-steering scheme based on the generalized
sidelobe canceller (GSC), aiming to reject a single directional
interference. To fully exploit the three microphone inputs, we
use the extra degree of freedom to optimize the directivity index.
Besides closed-form expressions for this optimal null-steering, we
present a novel gradient-search strategy.

I. INTRODUCTION

An azimuth steerable first-order superdirective beampattern
can be constructed by combining an monopole microphone
with two orthogonal dipole microphones. This class of small
differential beamformers was first proposed in [1]. In [2], a
beam-pattern synthesis method was presented for the rejection
of a directional inference with the best possible diffuse noise
reduction while having a unity response to a desired azimuthal
direction ϕs . In this paper, we present an adaptive scheme
based on the Generalized Sidelobe Canceller (GSC) that
obtains this optimal beam-pattern synthesis automatically.

Via the monopole Em and the two orthogonal dipoles E x
d

and E y
d (having the main-lobe to respectively the x and y

direction), we first rotate the dipoles via a rotation-matrix Rϕs :

Rϕs =
[

cos ϕs − sin ϕs
sin ϕs cos ϕs

]

. (1)

Next, two noise references Er1 and Er2 are constructed, being
respectively a cardioid and a dipole having a zero response
for angle ϕs (see Fig. 1) and the output response is given by:

E(θ, φ) = Em − w1 Er1(θ, φ) − w2 Er2(θ, φ). (2)
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Fig. 1. GSC scheme using a monopole and two orthogonal dipoles.

The GSC weights are indicated with w1 and w2 and θ and
φ are the standard spherical coordinates and:

Em = 1 (3)
Er1(θ, φ) = [1 − cos(φ − ϕs) sin θ] /2 (4)
Er2(θ, φ) = sin(φ − ϕs) sin θ. (5)

Note that for any value of w1 and w2, a unity response
at the output of the GSC is maintained for angle φ = ϕs
and θ = π/2. In Section II, we first analyze the non-adaptive
GSC structure. In Section IV, we derive an adaptive algorithm
based on the cost function of Section III. After the validation
in Section V, conclusions are given in Section VI.

II. OPTIMAL NULL-STEERING

Instead of computing the two GSC weights w1 and w2 by
minimizing both the energy of the directional interference and
other noises simultaneously, we hereafter minimize only the
energy of the directional interference. As we have two GSC
weights, we exploit the extra degree of freedom to control
the beampattern in such a way that the directivity index (or
directivity factor) is maximized.

Having a unity response for angle ϕs , we can compute
the weights w1 and w2 to steer a zero toward any desired
azimuthal angle ϕn , by solving E(θ, φ) = 0 for θ = π/2.
This results in the following relation between w1 and w2:

w1 = 2 (1 − w2 sin ϕ)

1 − cos ϕ
⇔ w2 = 2 − w1 (1 − cos ϕ)

2 sin ϕ
, (6)

with ϕ = ϕn − ϕs .
We exploit the extra degree of freedom to maximize the

directivity factor QS , given by [4] [1] 1:

QS = 4π E2(π/2, ϕs)
∫ 2π

φ=0
∫ π

θ=0 E2(θ, φ) sin θ dθ dφ
. (7)

Using Eq. (6) in Eqs. (2)-(5) and computing the extrema of
Eq. (7), we get the following solution for w1 and w2:







w1 = 2 − 2
3 cosϕ+5

w2 = − sinϕ(3 cosϕ+1)

3 cos2 ϕ+2 cosϕ−5 .
(8)

In Fig. 2, w1 and w2 are shown as function of ϕ.
The value of w2 will be zero in case ϕ = ±1.91 (resulting in

a hyper-cardioid) and in case ϕ = π (resulting in a cardioid).
Via Eq. (8), we can obtain an expression for calculating ϕn:

ϕn = ϕs + s arccos 9, (9)

1All equations for spherical isotropic noise can be easily translated to the
case for cylindrical isotropic noise.
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Fig. 2. Value of w1 (a) and w2 (b) as function of ϕ. The solid curves are
the solutions for spherical isotropic noise, while the dashed curves are the
solutions for cylindrical isotropic noise.

with the sign s ∈ {−1, 1} and:

9 = 5w1 − 8
−3w1 + 6

. (10)

The value of w2 can be used to resolve the sign ambiguity
in Eq. (9). By using Eq. (9) and using that sin(s arccos X) =
s
√

1 − X2, we can rewrite the rhs of Eq. (6) as:

w2 = s
√

1 − 92 (39 + 1)

392 + 29 − 5
. (11)

Knowing that 1 ≤ w1 ≤ 1 3
4 and therefore −1 ≤ 9 ≤ 1, we

can derive that:

s =
{

+1 if: w2(w1 − 1 1
2) ≥ 0

−1 otherwise,
(12)

thereby solving the ambiguity.

III. COST FUNCTIONS

A. Cost function for a directional interferer

We start with the discrete-time GSC equation2, given by:

y[k] = m[k] − ŵ1 r1[k] − ŵ2 r2[k], (13)

with the monopole signal m[k] = s[k]+n[k], s[k] the desired
signal coming from angle ϕs , n[k] the interferer coming from
angle ϕn, y[k] the output signal, and r1[k] and r2[k] the noise
reference signals. For a single directional interferer and using
the responses of Eq. (4)-(5), we obtain two reference signals
given by:

r1[k] =
[

(1/2) − (1/2) cos ϕ
]

n[k], (14)
r2[k] = sin ϕ n[k]. (15)

2In this section, we use discrete-time signals indicated in lower-case, e.g.
x[k] with k the discrete-time index. Furthermore, estimated parameters are
indicated with a hat, e.g. ŵ[k], where sometimes the time-index k is omitted
for convenience.

To reject a single interferer and at the same time have
the best isotropic noise rejection, we know from the previous
section that the weights ŵ1 and ŵ2 relate to ϕ̂n − ϕs by:

ŵ1 = 2 − 2
3 cos ϕ̂ + 5

, (16)

ŵ2 = − sin ϕ̂(3 cos ϕ̂ + 1)

3 cos2 ϕ̂ + 2 cos ϕ̂ − 5
, (17)

with:
ϕ̂ = ϕ̂n − ϕs, (18)

where ϕ̂n is the estimate of the angle of the undesired
interferer.

The cost function J (ϕ̂) is given by:

J (ϕ̂) = � {y2[k]}, (19)

with
� {· } the expectation operator.

Combining Eq. (13)-(19) and using
� {n[k]s[k]} = 0, we get

after some computations:

J (ϕ̂) = σ 2
s [k] +



cos ϕ +
sin ϕ sin ϕ̂

(

3 + 4
Â

)

− A

3 Â + 8





2

σ 2
n [k],

(20)
with Â = cos ϕ̂ − 1, A = cos ϕ − 1 and σ 2

s [k] = � {s2[k]} and
σ 2

n [k] = � {n2[k]}.
For σ 2

n = 1 and σ 2
s = 0, we plot the cost function for a few

values of ϕ as shown in Fig. 3.
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Fig. 3. Cost function J (ϕ̂) (in dB) for a directional interferer: σ 2
n = 1, for

three values of ϕ. The solid curve is the cost function for spherical isotropic
noise, by using ŵ1 and ŵ2 as in Eq. (16)-(17), while the dashed curve is the
cost function for cylindrical isotrpic noise, where other expressions for ŵ1
and ŵ2 are used.

Note that for ϕ = 0 and ϕ = 2π , we get J (ϕ̂) = 1, for
which there are no minima and maxima.

B. Cost function for isotropic noise

It is also useful to analyze the cost function in the presence
of isotropic noise. Assuming that we have a desired signal
s[k] coming from angle ϕs in the presence of isotropic noise



and that there is no directional interferer, we obtain m[k] =
s[k] + u1[k] and can compute the two noise reference-signals
as:

r1[k] =
[

u1[k] − u2[k]
√

γ
]

/2, (21)
r2[k] = u3[k]

√
γ , (22)

with ui [k], i = 1, 2, 3 mutually uncorrelated white-noise
signals and with γ = 1/3 and γ = 1/2 to model respectively
spherically and cylindrically isotropic noise [3] [5].

Using that ui [k], i = 1, 2, 3 are mutually uncorrelated and
using the weights ŵ1 and ŵ2 as given by Eq. (16) and Eq.
(17), we can write the cost function as:

Jd(ϕ̂) =

σ 2
s [k] +

(

cos ϕ̂ − 15γ cos ϕ̂ − 17γ − 1
9 cos3 ϕ̂ + 21 cos2 ϕ̂ − 5 cos ϕ̂ − 25

)

σ 2
d [k].

(23)

The cost function (σ 2
d = 1, σ 2

s = 0) is shown in Fig. 4.
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Fig. 4. Cost function Jd (ϕ̂) (in dB) for isotropic noise: σ 2
d = 1. The solid

curve is the case with spherical isotropic noise γ = 1/3, while the dashed
curve is the case with cylindrical isotropic noise γ = 1/2.

If we have both a directional interferer and isotropic noise
and assume that

� {n[k]ui [k]} = 0, we can construct the cost
function based on superposition of the two cost functions.

IV. GRADIENT SEARCH ALGORITHM

A. Computation of the gradient

A steepest descent update equation for ϕ̂ can be derived
by stepping in the direction opposite to the surface J (ϕ̂) with
respect to ϕ̂:

ϕ̂[k + 1] = ϕ̂[k] − µ∇ J (ϕ̂), (24)

with ∇ J (ϕ̂) the gradient of the cost function J (ϕ̂) w.r.t. ϕ̂

and where µ is the update step-size with 0 < µ < 1. As
in practice the mean

� {y2[k]} is not available, we have to
compute an instantaneous estimate of the gradient ∇̂ J (ϕ̂). By
using Eq. (13)-(18), we get:

∇̂ J (ϕ̂) = ∂y2[k]
∂ϕ̂

= 2y[k]
[

−∂ŵ1

∂ϕ̂
−∂ŵ2

∂ϕ̂

] [

r1[k]
r2[k]

]

,

(25)
where the Jacobian elements are computed as:

− ∂ŵ1

∂ϕ̂
= D−1 [6 sin ϕ̂

(

cos ϕ̂ − 1
)]

(26)

−∂ŵ2

∂ϕ̂
= D−1

[

3 cos2 ϕ̂ − 18 cos ϕ̂ − 17
]

(27)

with:
D = 9 cos3 ϕ̂ + 21 cos2 ϕ̂ − 5 cos ϕ̂ − 25. (28)

As the gradient-estimate clearly depends on the energy
of r1[k] and r2[k], it is beneficial to normalize the update
equation. While we could use power estimates for r1[k] and
r2[k] for the normalization, in practice it is important that
the adaptation is robust against desired signals s[k]. In case a
desired signal is present, it is better to reduce the adaptation,
as otherwise large misadjustments can occur in the adaptation.
Hence, we use a normalized update-rule, given by:

ϕ̂[k + 1] = ϕ̂[k] + 2µy[k]

P̂m[k] + ε

[

∂ŵ1

∂ϕ̂

∂ŵ2

∂ϕ̂

] [

r1[k]
r2[k]

]

,

(29)
where ε is a small value to prevent zero-division and the
power-estimate P̂m[k] of the monopole signal m[k] is com-
puted by a recursive averaging:

P̂m[k + 1] = β P̂m[k] + (1 − β) (m[k])2, (30)

where β is a smoothing parameter (lower, but close to 1).

B. Solutions for a directional interferer
When a directional interferer is present and we have no

isotropic noise, it can be seen from Fig. 3 that the steepest de-
scent method can end up in a non-unique minimum. Minimally
two and maximally three minima can be found in this cost
function. This can be clearly seen in Fig. 5, which illustrates
the (local) minima of the cost function for different angles ϕ3.
It can be seen that there is a minimum for the correct value
(ϕ̂ = ϕ for as indicated by the diagonal line). In addition it
can be seen that at least one and possibly two other minima
exist. For example, for ϕ = 1 rad., a cost function minimum
exist at for the correct value ϕ̂ = 1 rad., but also at the wrong
value of around 3.8 rad. Furthermore, for ϕ ∈ [1.8; 4.2] rad.,
two wrong minima exist.

C. Solution for isotropic noise
When only isotropic noise is present and we have no

directional interferer, we can compute from Eq. (23) that a
minimum is obtained for ϕ̂ given by:

ϕ̂ = arccos

(

−6 − 54γ ± 16
√

6γ − 9γ 2

90γ − 6

)

. (31)

Hence, for spherical isotropic noise, we obtain ϕ̂ = π −
arccos(1/3) ≈ ±1.91. This resulting hyper-cardioid beam-
pattern is known to be optimal in the presence of spheri-
cal isotropic noise conditions. When only isotropic noise is
present, the optimal solution is automatically obtained via the
gradient-search algorithm of Section IV-A. It is noted however,
that the estimated value ϕ̂ in the gradient-search algorithm for
isotropic noise only situations, does not resemble the angle of
a directional interferer anymore. Also when two (ore more)
directional interferences are present, the angle will not be
accurate anymore. We refer to [3] for improved solutions.

3It is possible to derive symbolic expressions for the 7 (local) min-
ima/maxima of the cost function J (ϕ̂) (also with complex-valued solutions).
In Fig. 5 only the real-valued solutions are shown.
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Fig. 5. Real-valued solutions (minima) for ϕ̂ of J (ϕ̂) as function of the
directional source locations given by ϕ.

D. Proposed multiple gradient search strategy

From the previous section, we have seen that when we
want to place a null to a directional interferer by means of
an adaptive algorithm, multiple local optimal solutions exist
(in case the diffuse noise is small or absent) and a standard
gradient search strategy is not sufficient.

Looking at the situation when only a directional interferer is
present, we can see from Fig. 5, that for an interferer angle in
the interval [0; π] (and similarly in the interval [π; 2π]), the
minimum found by the gradient-search in the same interval is
the correct value. This observation is exploited in a multiple
gradient search strategy, where we have two estimates ϕ̂1
and ϕ̂2 obtained via separate gradient-searches running in two
intervals 0 < ϕ̂1 < π and π < ϕ̂2 < 2π . In this way, we
are sure that one of these estimates converges to the correct
solution ϕ.

The selection of the correct estimate will be based on the
gradient of the cost function evaluated at ϕ̂ = π (correspond-
ing to the weights w1 = 1 and w2 = 0), having a backward
cardioid response with only a single null at the back. If this
gradient is negative, the correct solution lies in interval [0; π]
and we choose ϕ̂1 as correct solution, while for a positive
gradient, we choose ϕ̂2 as correct solution.

Via Eq. (25), an estimate of this gradient evaluated at ϕ̂ = π

can be computed as:

∇̂ J (π)[k] = −(m[k] − r1[k]) r2[k]. (32)

Hence, by correlating the forward cardioid response with the
noise reference response Er2 and looking at the sign, we can
select the correct solution. As there can be noise present in
the gradient ∇̂ J (π), we propose to smooth this estimate:

∇̂s J (π)[k+1] = βs ∇̂s J (π)[k]+(1−βs)
(r1[k] − m[k]) r2[k]

P̂m + ε
,

(33)
with βs a smoothing parameter (lower, but close to 1). To avoid
a poor Directivity Index, we can also limit the range of ϕ̂.

V. VALIDATION

We validate the tracking behavior of the multiple gradient
update algorithm as proposed in Section IV and perform a
simulation, with a fixed desired source at position ϕs = π/2
rad. and variance σ 2

n = 1. Furthermore, the angle of the
directional interferer ϕn is linearly increased from 100 degrees
to 440 degrees (i.e. a rotation of 340 degrees) in a time-span
of 10000 samples. We also added isotropic noise (σ 2

d = 1/4).
Furthermore, we used α = 0.25, µ = 0.02, β = 0.975
and βs = 0.995. The results are shown in Fig. 6. Note the
resemblance of the curves in Fig. 6 with the theoretic minimum
solutions of the cost function in Fig. 5.
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Fig. 6. Simulation with a directional interferer, where ϕ̂n1 = ϕ̂1 + ϕs and
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4 (spherical isotropic noise); the bold-curve
indicates the correct solution selected via the gradient estimate ∇̂s J (π).

VI. CONCLUSIONS

An adaptive first-order superdirectional beamformer was
presented, having a unity response for a desired azimuthal
angle, while placing a null at an undesired azimuthal angle
under the constraint that the directivity index is maximized.
The algorithm is based on a cost function that is minimized
via a gradient search algorithm. As the cost function has
multiple (local) minima, we propose a multiple gradient search
algorithm that tracks two candidate-angles for the directional
interferer. Via a third gradient estimate, the correct angle from
these two candidate-angles is selected for the null-steering.
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