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Abstract—For unobtrusive capturing of acoustic breathing
signals during sleep, a microphone can be placed in the vicinity
of the person. As breathing signals are generally very weak
compared to the intrinsic noise of the microphone, the resulting
signal-to-noise ratio (SNR) is low. We present a de-noising tech-
nique for the enhancement of acoustic breathing signals captured
with a microphone. As the intrinsic noise of the microphone is
stationary, we can use standard spectral subtraction schemes
with stationary noise-floor estimators. For bad SNR conditions
however, these techniques suffer from musical tones. To remove
these musical tones, we apply median filtering in the standard
spectral subtraction scheme. Furthermore, an alternative solution
is proposed that has a very low computational complexity.

I. INTRODUCTION

When unobtrusively recording breathing signals with a
microphone during sleep, the microphone can be placed in
the vicinity of the breathing person, say approximately 50 cm
away from the person. In Fig. 1, this setup is shown.
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Fig. 1. Recording of breathing via a microphone.

As the acoustic energy from the breathing is generally
very weak, the signal-to-noise ratio (i.e. the ratio between
the breathing signal and the noise) can be very poor, making
it difficult to extract the relevant respiratory parameters, like
the respiratory-rate, from the signal. The signal-to-noise ratio
(SNR) of the microphone is determined by two types of noises:

• Intrinsic sensor-noise; generated by air-particles on the
membrane of the microphone and 1/ f noise introduced
by the pre-amplifier (e.g. a FET) in the microphone,

• Acoustic noise; generated by external sources in the envi-
ronment, transmitted via the acoustic paths and captured
by the membrane of the microphone.

The first type of noise can be reduced by using a microphone
with lower intrinsic noise (self-noise). Cheap microphones
have self-noise of roughly 34 dBA SPL, while expensive (low-
noise) microphone can have self-noise of roughly 14 dBA SPL.

The second type of noise can be reduced by using direc-
tional microphones. Most of such microphones have a first-
order directive beam-shape, enabling a diffuse noise reduction
of maximally 6 dB (hyper-cardioid) [1]. However, it should
be noted that this directionality often leads to a degradation in
intrinsic noise of the microphone (also known as noise-boost
[1]), because an extra amplification is required in the lower-
frequency range to maintain a flat frequency spectrum.

In this paper, the aim is to improve the signal-to-noise
ratio (to improve the automatic classification of breathing
signals) without using a better microphone (i.e. lower intrinsic
noise or improved spatial directivity) and without placing the
microphone closer to the breathing person. We apply de-
noising based on spectral subtraction techniques known from
the speech enhancement area [2].

We assume that there is only stationary noise present in
the microphone signal, caused by the intrinsic noise of the
microphone. For a breathing person in a sleep situation this is
a valid assumption, as it can be expected that the undesired
acoustic noise from the environment is relatively low.

II. SPECTRAL SUBTRACTION

We start by sampling the microphone signal with a
sampling-frequency of Fs = 8 kHz, which is sufficient for
preserving the relevant spectral information of the breathing
sounds. We apply the spectral-subtraction method (known
from the speech enhancement area) to reduce the stationary
noise [2]. The basic scheme (spectral analysis, modification,
synthesis) is shown in Fig. 2.

The samples of the discrete time-signal x(k) with time-
index k are first concatenated to blocks of B samples. Then,
a block of M samples is constructed by concatenating the
current B samples with B samples from the previous block1.
The M samples are windowed with a raised cosine window
and converted to the frequency-domain via an FFT operation,
resulting in a complex-spectrum X (κ, ω), ω = [0; M −1] with
κ the block-index. As the spectrum originates from real-valued
input-data, X (κ, ω) is a two-sided spectrum having complex-
conjugate symmetry (Hermitian).

Next, the complex-spectrum X (κ, ω) is converted to a
magnitude spectrum. Based on this magnitude spectrum the
spectral noise-floor is estimated. As we will assume that the
noise in the microphone signal x(k) is mainly originating from
the intrinsic sensor-noise, we can assume that this noise is

1Here we use M = 2B which is a 50% overlap situation.
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Fig. 2. Basic spectral subtraction.

long-term stationary. Hence the noise-floor can be determined
by tracking of the spectral minimum [3] over a long period
of time (say 10 seconds or more). This spectral noise-floor
estimation will be indicated with N̂ (κ, ω), with ω = [0; M/2].
The bins with ω = [M/2 + 1; M − 1] are redundant because
the spectrum is symmetrical. With the noise-floor estimation, a
gain-function [2] is computed which has spectral-values in the
range between 0 and 1. The gain-function G(κ, ω) is computed
for 0 ≤ ω ≤ M/2 as:

G(κ, ω) = max

{

|X (κ, ω)| − γ N̂ (κ, ω)

|X (κ, ω)|
, 0

}

, (1)

where the maximum operation is required to ensure positive
values for the gain-function and γ is a parameter that enables
so-called over-subtraction when choosing γ > 1. This is
usually required to improve the amount of noise-reduction (at
the cost of more distortion of the desired signal).

Next, X (κ, ω) is multiplied by this gain-function2:

Y (κ, ω) =

{

X (κ, ω) G(κ, ω) for: 0 ≤ ω ≤ M/2
X (κ, ω) G(κ, M − ω) for: M/2 < ω < M.

(2)
The resulting complex spectrum Y (κ, ω) is now converted

to time-domain via an IFFT. Finally, the overlap-add procedure
is applied to obtain the output-signal y(k) [2].

It is known from speech-enhancement that enhancing sig-
nals with a bad SNR via the spectral subtraction method
gives rise to musical tones (also known as musical noise) that
have a highly stochastic character in both time- and frequency
[2]. Sometimes time- and/or frequency-averaging of the gain-
function is applied to reduce these musical tones. Also median-
filtering is sometimes used [4]. For speech signals however,
too much averaging leads to distortion of the speech signal,
as the quasi-stationarity of speech is around a few tens of

2Only a single-sided spectrum has to be computed in practical realizations,
due to the complex-conjugate symmetry.

milliseconds and speech can have vowels with a formant
structure having lots of peaks and valleys.

We captured a breathing signal by using a microphone
(AKG CK31) with intrinsic noise level of 20 dBA SPL, placed
at approximately 50 cm away from the breathing person while
asleep. If we look at the de-noising of this breathing signal
by the regular spectral subtraction scheme as discussed above,
we get the time-frequency spectrum for the original and de-
noised breathing fragment3 as shown in Fig. 3. Here, we used
B = 256 as block-size and Fs = 8 kHz. For obtaining the
result of the de-noising algorithm shown in Fig. 3 (b), we
used a very large over-subtraction factor γ = 8 to minimize
musical tones which are nevertheless still visible in Fig. 3 (b).

(a) (b)

Fig. 3. Original time-frequency spectrum (a) and de-noised time-frequency
spectrum (b) of a breathing fragment during sleep.

The SNR improvement is limited due to the bad SNR of
the original fragment. Even by using a large over-subtraction,
musical tones are still present in the time-frequency spec-
trogram area where there is no breathing event (before and
after the dashed lines in Fig. 3). As the musical tones can
negatively influence the breathing event detection we focus
on the suppression of musical tones. Although we are aware
of the fact that there are many methods to remove musical
tones, we focus on the median filtering in the time-frequency
plane, as shown in the remainder of this paper.

III. MODIFIED SPECTRAL SUBTRACTION

To reduce musical tones in the regular spectral subtraction
scheme, we exploit specific characteristics of breathing sig-
nals. Most breathing-signals are quasi-stationary over a rel-
atively long time-inverval (several hundreds of milliseconds)
and have a broad and spectrally filled frequency spectrum. In
other words: the breathing increases and decreases very slowly
over time and also the frequency-content does not show peaks
and valleys like in vowels of speech. Therefore, we can apply
averaging techniques and median-filters over a large time-span,
but also over a large frequency range. In this section, we will
extend the spectral subtraction scheme (see Section II) with 2D

3This breathing fragment was recorded during sleep and is actually an ex-
hale fragment. It was found that for normal breathing sounds (i.e. no snoring
or wheezing sounds), mainly ex-hales are present in the acoustic breathing
signal during a full night sleep.



median filtering, where the time-frequency kernels are chosen
in such a way that musical tones are reduced sufficiently, while
still preserving the breathing signal.

In the modified de-noising scheme, a modified gain-function
G̃(κ, ω) is computed based on the gain-function data G(κ, ω)

and a kernel of size T × F , with T and F being the time-order
and frequency-order respectively:

G̃(κ, ω) =

{

med {G(κ, ω)} if: � ≤ ω ≤ M
2 − F + � + 1,

0 otherwise
(3)

with:
� =

⌊ F
2

⌋

, (4)

where the matrix G(κ, ω) is constructed as:

G(κ, ω) =










G (κ − T + 1, ω0) . . . G (κ, ω0)

...
. . .

...

G (κ − T + 1, ω0 + F − 1) . . . G (κ, ω0 + F − 1)











,

with:
ω0 = ω − �, (5)

and where med{A} outputs the median value of all matrix
elements of matrix A. This involves sorting a list of all array
elements and the middle element of this sorted list is taken
as output-value. It is noted that at the boundaries of the gain-
function we will not compute the median and set the modified
gain-function value G̃(κ, ω) to zero.

By taking the median of the gain-values within a certain
kernel, we can intuitively understand that the outliers (musical
tones) are removed when the number of outliers is less
than half of the kernel-size. This is generally satisfied when
choosing γ > 1.

The optimal kernel size will also depend on the signal
(breathing) type. For example, normal breathing sounds re-
quire different kernel sizes compared to wheezing or snoring
sounds, which have more peaks and valleys in the spectrum.

The computational complexity of the median filtering is very
large. To sort a list of N elements, we require a complexity in
the order of N log N . This means that for every block-iteration,
the median filtering requires a computational complexity in the
order of T · F · (M/2 − F + 2) log(T · F). Therefore, we seek
for an algorithm that has a lower computational complexity.

IV. LOW-COST SOLUTION

In this section, we present a low-cost solution for the
modified spectral subtraction as discussed in Section III. The
low-cost solution consists of three basic steps:

• Binary quantization of gain-function values G(κ, ω),
• Compute kernel-area integral via the summed area table,
• Compute median via the majority operator.
First, the gain-function values G(κ, ω) are quantized as:

Gq(κ, ω) =

{

0 if: G(κ, ω) = 0
1 if: G(κ, ω) > 0.

(6)

Next, we compute the kernel area (integral) of the quantized
gain-function:

Iq(κ, ω) =

i=T −1
∑

i=0

j=F−1
∑

j=0

[

Gq(κ, ω)
]

i, j , (7)

with the matrix Gq(κ, ω) defined similar to G(κ, ω) and
[G(κ, ω)]i, j indicates the i ’th column-index and the j ’th row-
index of this matrix.

As this straightforward computation of the integral still has
a quite large computational complexity, we will propose to
compute the integral by means of the so-called summed area
table [5]. This method is also known as the integral-image,
because of the use of this technique in picture processing.
The (circular) summed area table in our case will be denoted
by matrix S(κ) and has a dimension of (T + 1) × (M/2 + 1).
The values of the summed area table S(κ) are computed as:

[

S(κ)
]

κ (mod T +1),ω
=

κ
∑

i=0

ω
∑

j=0
Gq(i, j), (8)

where [S(κ)]i, j indicates the element of matrix S(κ) with
column-index i and row-index j .

We can compute the summed area table efficiently [5] by
starting with an empty summed area table:

[

S(0)
]

i, j = 0, for: 0 ≤ i ≤ T and: 0 ≤ j ≤ M/2 (9)

and updating the contents of the summed area table for each
iteration κ by a single pass from ω = 0 to ω = M/2 and
computing:

[S(κ)] κ (mod T +1),ω = Gq(κ, ω) + [S(κ)] (κ−1) (mod T +1),ω

+







[S(κ)] κ (mod T +1),ω−1
− [S(κ)] (κ−1) (mod T +1),ω−1 if: ω > 0

0 otherwise.
(10)

As the values in the summed area table will increase
over time, we apply a modulo operation on these values
and compute through the overflow [6]. As all values in the
table are either 0 or 1, we know that the integral can have
maximum values up to (T + 1)· (M/2 + 1). Therefore, we
store the values of the summed area table modulo X where
2n = X ≥ (T + 1)· (M/2 + 1), with n integer.

The integral is computed by only accessing four values from
the summed area table:

Iq(κ, ω) =

{

S if: � ≤ ω ≤ M
2 − F + � + 1,

0 otherwise
(11)

with:

S = [S(κ)] κ (mod T +1),ω0+F−1 − [S(κ)] (κ+1) (mod T +1),ω0+F−1

+







[S(κ)] (κ+1) (mod T +1),ω0−1
− [S(κ)] κ (mod T +1),ω0−1 if: ω0 > 0

0 otherwise.
(12)

The low-cost solution for the median filtering to obtain the
modified gain-function is now given by computing the so-
called majority function [7] (also known as median operator):

G̃q(κ, ω) =
⌊1

2
+

Iq(κ, ω) − 1/2
T F

⌋

, (13)



where:
G̃q(κ, ω) ∈ {0, 1}. (14)

As the majority function only outputs values of 0 or 1, the
resulting gain function G̃q(κ, ω) will also be quantized to these
levels. Therefore, an alternative is to let the modified gain-
function also have values between 0 and 1 when the majority
function outputs 1. This computation of the modified gain-
function is given by:

G̃c(κ, ω) =
2

T · F
· max

{

Iq(κ, ω) −
T · F

2
, 0

}

, (15)

where:
G̃c(κ, ω) ∈ [0, 1]. (16)

Application of Eq. (15) leads to a more gradual behaviour of
the modified gain-function G̃c(κ, ω) over time and frequency.

Since in Eq. (15), the values 2/(T · F) and (T · F)/2 can be
pre-computed, the computational complexity of the proposed
filtering scheme requires only 8· (M/2 − F + 2) operations
for every block-iteration (linear complexity). The gain 9G in
computational complexity with respect to the median filtering
of Section III is therefore:

9G =
T · F · log(T · F)

8
. (17)

For large kernel sizes T · F , the gain in computational com-
plexity is large compared to the median filtering and experi-
ments have shown that this gain is obtained without sacrificing
in performance.

V. EXPERIMENTS

Due to the limited length of this paper, only the results of
the low-cost solution are shown, which are comparable with
the median-filtering solution. For the same breathing fragment
as in section II (with the same conditions), the results for the
low-cost solution with several kernel sizes T = F and using
γ = 1.25 are shown in Fig. 4. Statistical evaluation is omitted,
as our contribution is related to the complexity reduction.

By visual inspection, we can see musical tones in Fig. 4 (b)
and we can see the severe signal attenuation in Fig. 4 (c) and
(d). Experiments show that we have optimal results for a kernel
size (T, F) = (10, 40) (see Fig. 5), which does not show any
musical tones. As the optimal kernel size is dependent on the
breathing type, we require a model-order selection method,
which will be a separate topic for future research.

VI. CONCLUSIONS

We presented a modified spectral subtraction scheme to
enhance breathing signals captured by a microphone. Breath-
ing signals are quasi-stationary over long time-intervals (in
the order of several hundreds of milliseconds) and have a
broad and flat frequency spectrum. Hence, 2D median filtering
can be applied with relatively large kernel-sizes in the time-
frequency plane to suppress musical tones. As the computa-
tional complexity of median filtering is very large, we present
an alternative filtering scheme that approximates the median
filtering scheme. This efficient scheme uses the summed area
table and the majority function.

(c) (d)

(b)(a)

Fig. 4. Spectrogram for filtering scheme with (T, F) = (5, 5) (a), (10, 10)

(b), (20, 20) (c) and (40, 40) (d).

Fig. 5. Spectrogram for filtering scheme with (T, F) = (10, 40).
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